

The ASVspoof 2017 Challenge: Assessing the Limits of Replay Spoofing Attack Detection

Tomi Kinnunen, University of Eastern Finland, FINLAND Md Sahidullah, University of Eastern Finland, FINLAND Héctor Delgado, EURECOM, FRANCE Massimiliano Todisco, EURECOM, FRANCE Nicholas Evans, EURECOM, FRANCE Junichi Yamagishi, Univ. of Edinburgh, UK & National Institute of Informatics, JAPAN Kong Aik Lee, Institute for Infocomm Research, SINGAPORE

Organizers

Tomi H. Kinnunen

UEF, Finland

Md Sahidullah

UEF, Finland

Héctor Delgado

EURECOM, France

Massimiliano Todisco EURECOM, France **Nicholas Evans**

EURECOM, France

Junichi Yamagishi

Univ. of Edinburgh, UK NII, Japan

Kong Aik Lee

I²R, Singapore

Structure of the session

First slot 11:00 – 13:00

CHAIRS: Tomi Kinnunen, Junichi Yamagishi

INTRODUCTION, 30 mins

6 ORAL PRESENTATIONS, each 12 + 3 min

Second slot 14:30 – 16:30

CHAIRS: Nicholas Evans, Kong Aik Lee

6 ORAL PRESENTATIONS, each 12 + 3 min

GENERAL DISCUSSION @ 16:00---

Spoofing attacks

a.k.a. presentation attacks [ISO/IEC 30107-1:2016]

Replay attack

replay spoofing – Sneakers (1992)

Universal Pictures

History of ASVspoof

Replay attack countermeasures

- 1. Phrase prompting with utterance verification Did the user speak the prompted text ?
- 2. Audio fingerprinting

Do I know this recording ?

3. Speaker-independent replay detection Is this recording authentic or replayed one ?

ASVspoof 2017

Can be circumvented using voice conversion

Dynamically increasing database size

Most general - but can it be done?

- 1. T. Stafylakis, M. J. Alam, and P. Kenny, "Text dependent speaker recognition with random digit strings," IEEE/ACM T-ASLP 24(7): 1194–1203, 2016.
- 2. Q. Li, B.-H. Juang, and C.-H. Lee, "Automatic verbal information verification for user authentication," IEEE Transactions on Speech and Audio Processing, vol. 8, no. 5, pp. 585–596, Sep 2000.
- 3. T. Kinnunen, M. Sahidullah, I. Kukanov, H. Delgado, M. Todisco, A. Sarkar, N. B. Thomsen, V. Hautamaki, N. Evans, and Z.-H. "Tan, "Utterance verification for text-dependent speaker recognition: a comparative assessment using the RedDots corpus," Proc. INTERSPEECH, 2016
- 4. C. Ouali, P. Dumouchel, and V. Gupta, "A robust audio fingerprinting method for content-based copy detection," in Proc. 12th International Workshop on Content-Based Multimedia Indexing (CBMI), June 2014, pp. 1–6
- 5. M. Malekesmaeili and R. Ward, "A local fingerprinting approach for audio copy detection," Signal Processing, vol. 98, pp. 308 321, 2014

Replayed or nonreplayed ?

Authentic (non-replayed)

Replayed

Replayed

ASVspoof challenge task

Standalone, speaker-independent detection of spoofing attacks

High score \rightarrow more likely a live human being Low score \rightarrow more likely a spoofed sample

Evaluation metric:

Equal error rate (EER) of replay-nonreplay discrimination

- **ASVspoof 2015**: EERs averaged across attacks
- **ASVspoof 2017**: EERs from pooled scores

Crowdsourced replay attacks

- Text-dependent automatic speaker verification
- Collected by volunteers (ASV researchers)
- Various Android devices, speakers, accents

Examples of replay configurations

Smartphone \rightarrow Smartphone

Headphones → PC mic

High-quality loudpspeaker → high-quality mic

REPLAY CONFIGURATION = Playback device + Environment + Recording device

> High-quality loudspeaker → smartphone, anechoic room

Laptop line-out → PC line-in using a cable

T. Kinnunen et al., "RedDots replayed: A new replay spoofing attack corpus for text-dependent speaker verification research," 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 2017, pp. 5395-5399.

- Ground truth provided
- Re-partitioning allowed

TRAINING SET

- 10 speakers
- 3 replay configs

DEVELOPMENT SET

- 8 speakers
- 10 replay configs

EVAL SET

- 24 speakers
- 110 replay configs

Impact of replay samples to ASV gmm-ubm system

Participant statistics

- Registration: 113 teams or individuals
- Submitted results: 49 (43%)

Challenge results and further analyses

• Official challenge results

• Further analyses

Official challenge results

Common primary submissions' results

- Very difficult challenge!
- 21 submissions outperformed the baseline
- S01: >70% relative improvement w.r.t baseline B01
- B01 B02: Important performance improvement when using pooled train+dev data for training

Sxx: Regular submission Bxx: Baseline system Dxx: Late submission

Summary of top 10 systems

ID	EER	Features	Post-proc.	Classifiers	Fusion	#Subs	. Training
S01	6.73	Log-power Spectrum, LPCC	MVN	CNN, GMM, TV, RNN	Score	3	Т
S02	12.34	CQCC, MFCC, PLP	WMVN	GMM-UBM, TV-PLDA, GSV- SVM, GSV-GBDT, GSV-RF	Score	-	Т
S03	14.03	MFCC, IMFCC, RFCC, LFCC, PLP, CQCC , SCMC, SSFC	-	GMM, FF-ANN	Score	18	T+D
S04	14.66	RFCC, MFCC, IMFCC, LFCC, SSFC, SCMC	-	GMM	Score	12	T+D
S05	15.97	Linear filterbank feature	MN	GMM, CT-DNN	Score	2	т
S06	17.62	CQCC , IMFCC, SCMC, Phrase one-hot encoding	MN	GMM	Score	4	T+D
S07	18.14	HPCC, CQCC	MVN	GMM, CNN, SVM	Score	2	T+D
S08	18.32	IFCC, CFCCIF, Prosody	-	GMM	Score	3	Т
S10	20.32	CQCC	-	ResNet	None	1	Т
S09	20.57	SFFCC	-	GMM	None	1	Т
D01	7.00	MFCC, <mark>CQCC</mark> , WT	MVN	GMM, TV-SVM	Score	26	T+D
						-	F: training

DNN-based classifier Other classifier

Further analyses

Defining evaluation conditions

- 110 replay configurations in evaluation set
- Characterize replay configurations through objective measurements
 - Signal-to-noise ratio (SNR)
 - Cepstral distance (CSD): measures the degradation of a replayed recording w.r.t. its source recording
- Intuition:
 - More difficult attacks \rightarrow High SNR, low CSD
 - − Easier attacks → Low SNR, high CSD

Average quality measures per replay configuration

Average CSD vs. SNR scatter plot for the 110 replay configurations

Alternative approach: define evaluation conditions according to countermeasure performance

1. Top Countermeasures fusion Trial score
computation and
Replay
Configuration
averaging

3. Clustering

Evaluation conditions

1. Countermeasure fusion

Oracle linear fusion¹ of systems S01 to B01 to obtain a high performance countermeasure

EER (%) System S01 6.73 S02 12.34 S03 14.03 S04 14.66 15.97 S05 S06 17.62 S07 18.14 S08 18.32 20.32 S10 S09 20.57 S11 21.11 S12 21.51 S13 21.98 22.17 S14 S15 22.39 S19 23.16 23.24 S18 S17 23.29 S10 23.78 B01 24.77 D01 7.00 Fused 2.76

¹Using the Bosaris toolkit

2. Average Replay Configuration (RC) scores computation and sorting

3. Average scores clustering with k-means

Clustering solution based on CM averaged fused scores per replay configuration

Obtained evaluation conditions

Averaged fused score, cepstral distortion and signal-to-noise ratio of the resulting evaluation conditions

Performance of top-10 primary submissions per evaluation condition

Box plot of top-10 systems' performance for clusters C1-C6

Pooled EER vs. weighted EER for top-10 systems

(equivalent to average EER used in ASVspoof 2015)

Conclusions

- Successful crowdsourcing approach to replay data collection
- Probably the most 'wild' replay data for ASV
 - Difficult to characterize
- Top-ranked system
 - ~70% relative improvement w.r.t. the baseline system
 - Fusion of only 3 subsystems!
- Encouraging performance
 - Limits of replay detection
 - Excepting unrealistic attacks (loopcable), high detection performance for high quality attacks

