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Abstract

The detection of human and spoofed (synthetic/converted)
speech has started to receive more attention. In this study,
relative phase information extracted from a Fourier speatr

is used to detect human and spoofed speech. Because origi-

nal/natural phase information is almost entirely lost incfied
speech using current synthesis/conversion techniquesda m
fied group delay based feature, the frequency derivativeef t
phase spectrum, has been shown effective for detectingrhuma
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synthetic speech. These studies indicate that phaseddéste
tures outperform magnitude-based features because theairi
phase information is lost in the spoofed speech.

The most commonly used phase related feature may be the
group delay based feature [13, 14]. Group delay is defined as
the negative derivative of the phase of the Fourier transfoir
a signal. In fact, the group delay based phase contains both
the magnitude spectrum and phase spectrum [12, 13, 14]. This
means the component of magnitude spectrum in group delay
may degrade the performance of spoofing detection. In our pre

speech and spoofed speech. The modified group delay based vious study [15, 16, 17, 18], relative phase informatioredily

phase contains both the magnitude spectrum and phase aform
tion. Therefore, the relative phase information, whichtaors
only phase information, is expected to achieve a betterfsgpo
detection performance. In this study, the relative phafesrima-

tion is also combined with the Mel-Frequency Cepstral Coeffi
cient (MFCC) and modified group delay. The proposed method
was evaluated using the “ASVspoof 2015: Automatic Speaker
Verification Spoofing and Countermeasures Challenge” datas
The results show that the proposed relative phase infoomati
significantly outperforms the MFCC and modified group delay.
The equal error rate (EER) was reduced from 1.74% of MFCC,
0.83% of modified group delay to 0.013% of relative phase. By
combining the relative phase with MFCC and modified group
delay, the EER was reduced to 0.002%.

Index Terms: Spoofing detection, relative phase information,
group delay, GMM, countermeasures

1.

Recently, speaker verification technology has been used in
many applications using telephone, such as telephone rmanki
and credit cards [1, 2]. However, the conventional spea&gr v
fication system is weak for voice conversion and speech synth
sis techniques [3, 4]. In voice conversion, the speech ofiecso
speaker is converted to voice like a target speaker. Forchpee
synthesis, the voice of the target speaker is mimicked given
text. Related studies have indicated that the detectiopauffed
speech (synthetic/converted speech) from human speeehyis v
important to improve the robustness of speaker verificaysna
tems [5, 6, 7, 8, 9, 10]. In this study, we focus on spoofing
detection, a task to determine whether a speech sampldért®nta
human or spoofed speech.

To detect spoofed speech from human speech, many fea-
tures (e.g. magnitude spectrum, pitch, group delay and mod-
ulation features) have been considered [5, 9, 11]. In auditi
to pitch information, spectral information was proposedi¢s
tect synthetic speech [5]. In [11], cosine-normalized pheasd
modified group delay function phase spectrum based features
were proposed to distinguish voice converted speech from hu
man speech. In [9], modulation features were applied toctiete
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extracted from the Fourier transform of the speech wave has
been proposed. To reduce the phase variation by cutting posi
tions, the phase of a certain base frequency is kept constant
and the phases of other frequencies are estimated relative t
this. The experimental results showed that the relativesgpha
information was effective for speaker recognition for vas
conditions. In this paper, the relative phase informatoprb-
posed to detect human speech and spoofed speech. Because
the relative phase information does not contain any madeitu
spectrum and cannot normalize the phase variation by guttin
positions, it is expected to achieve a better performanaa th
other phase relative features such as the group delay beaed f
ture. Furthermore, the relative phase information is comdbi
with modified group delay for spoofing detection.

The remainder of this paper is organized as follows: The
system of spoofing detection is described in Section 2. &ecti
3 presents the modified group delay and the relative phase in-
formation extraction. The experimental setup and results a
reported in Section 4, and Section 5 presents our conclsision

2. Overview of spoofing detection system

The flowchart of the spoofing detection system is shown in Fig.
1. In this study, a Gaussian mixture model (GMM) [21, 22] is
used as spoofed speech detector. The decision about whether
speech is natural human or spoofed is based on the log likeli-
hood ratio:

A(0) =10g p(OAnuman) = 108 p(OfAspoos), (1)
where O is the feature vector of input speechyyman and
Aspooy are the GMMs for natural and spoofed speech, re-
spectively. Here, Mel-frequency Cepstral Coefficient (MBC
modified group delay and relative phase information desdrib
in Section 3 are used.

In this study, the likelihood ratios of two or three features
are also linearly combined to produce a new scbrg..,(O)
given by

Acomp(0) =D~ anA(0y), (2)
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Figure 1:Flowchart of spoofing detection system.

where A(O,,) is the log likelihood ratio andv,, denotes the
weighting coefficients corresponding to theth feature set
n € {1,2,3} is MFCCs, MGDCC or Relative phase, respec-
tively. The decision threshold and weighting coefficientreve
determined using a development set.

3. Phase information extraction
3.1. Modified group delay

The spectrumX (w) of a signal is obtained by DFT of an input
speech signal sequence x(n)

X(w) = [X ()], 3)
where| X (w)| andd(w) are the magnitude spectrum and phase
spectrum at frequenay, respectively.

Group delay [23] is defined as the negative derivative of the
Fourier transform phase for frequency, that is,

r(w) = - L8,

4

The group delay function can also be calculated directlynfro
the speech signal using

_ Xr(W)Yr(w) + Yi(w) X1 (w)
|X (w)]? '

T (W) %)

where the subscript® and I denote the real and imaginary
parts of the Fourier transfornX (w) andY (w) are the Fourier
transforms ofc(n) andnz(n), respectively.

There are many studies reporting that modified group delay

is better than the original group delay [12, 13, 14, 23]. The
modified group delay function can be defined as

() = Xr(w)Yr(w) + Yl(w)XI(w)’

Se(w)

(6)

whereS.(w) is the cepstrally smoothed spectrumfv) and
S(w) is the squared magnitud& (w)|? of the signals(n).

3.2. Relative phase information

The phase changes depending on the clipping position of the
input speech even at the same frequesacyTo overcome this
problem, the phase of a certain base frequendg kept con-
stant, and the phases of other frequencies are estimateeel

Table 1:Phase variation related to the frequencyand sample
points A of shifted position.

Period

_2r A
T w= = T2m ‘

Frequency| Phase variatior{

to this. For example, by setting the base frequendy 0, we
obtain

X'(w) = [X(w)] x &) x 0D, ™

whereas for the other frequeney = 27 f/, the spectrum be-
comes [18]

X' (W)

= X'(W)] x €7D x o G0, (8)
In this way, the phase can be normalized, and the normalized
phase information becomes

©)

In the experiments described in this paper, the base fre-
guencyw is set to2wx 1000 Hz. In the previous study, we
used phase information only in a sub-band frequency range to
reduce the number of feature parameters. However, a problem
arose with this method when comparing two phase values. For
example, for two values — ¢, andf> = —x + 61, the differ-
ence i —260;. If 01 = 0, then the difference iss 27, despite
the two phases being very similar to each other. Therefoee, w
modified the phase into coordinates on a unit circle [18],itha

0 — {cosf,sin6}. (10)

We can reduce the phase variation using the relative phase
extraction method that normalizes the phase variation tiingu
positions. However, the normalization of phase variatgostill
inadequate. For example, for a 1000-Hz periodic wave (16 sam
ples per cycle for a 16-kHz sampling frequency), if one sampl
point shifts in the cutting position, the phase shifts oryy%,
while for a 500-Hz periodic wave, the phase shifts onIy%y
with this single sample cutting shift. However , if the 17 $den
points shift, the phases of the 1000-Hz and 500-Hz waves will
shift by 1227 (mod2rm) = 2Z and2X, respectively. Therefore,
the values of the relative phase information for differautiog
positions are very different from those of the original mgt
position. The phase variation is summarized in Table 1. We
have partly addressed such variations using a statistivdG
[18].

If we could split the utterance by each pitch cycle, changes
in the phase information would be further obviated. Thus, we
proposed a new extraction method that synchronizes the spli
ting section with a pseudo-pitch cycle [19, 20]. With regpec
to how to unite the cutting sections in the time domain, the pr
posed method looks for the maximum amplitude at the center of
the conventional target splitting section of an utteranemex
form, and the peak of the utterance waveform in this range is
adopted as the center of the next window. This means that the
center of the frame has maximum amplitude in all frames. Fig.
2 outlines how to synchronize the splitting section. We expe
an improvement over our proposed conventional phase irform
tion [16, 17, 18].




Hamming window
Table 2:Number of non-overlapping target speakers and utter-
ances in the training, development and evaluation datasets

Utterance

#Speakers #Utterances
Subset Male | Female| Genuine| Spoofed
Training 10 15 3750 12625
Development| 15 20 3497 49875
Evaluation 20 26 9404 ~ 200000

| i

A / ' WavefTrm Table 3:Analysis conditions for MFCC, MGDCC and relative
Cutting section orgina phase information.

i cut%:gti;gon Range which cutting section ]

, seachespeak b | - MFCC MGDCC Relative phase

! \;—|/ : : Frame lengt 25 ms 25 ms 12.5 ms

! cutting section

i Iy Frame shift 10 ms 10 ms 5ms

i FFT size 512 samples| 512 samples| 256 samples

[ (400 data plus| (400 data plus| (200 data plus
N 112 zeros) 112 zeros) 56 zeros)

i Dimensions 38
Jer J :

Adjustment of /"_’l J

formation was calculated every 5 ms with a window of 12.5
ms. A spectrum with 128 components consisting of magnitude
and phase was calculated by DFT for every 256 samples. Then
39 static relative phase features (that is,c2960 and 19sin 0)

were extracted. For the pseudo-pitch-synchronized phase i
formation extraction method, the range for searching tlak pe
amplitude point is 2.5 ms (half of the frame shift). The detai

of analysis conditions for MFCC, MGDCC and relative phase
information are summarized in Table 3.

We evaluate our proposed method for spoofing detection using . ©MMs of human and spoofed speech were trained using a
the standard “ASVSpoof 2015 Challenge” datdsaftboth gen- training dataset, and the mixed number of GMMs was 256, as
uine (human) and spoofed speech. Genuine speech was col- d€términed by the development dataset.
lected from 106 speakers (45 male, 61 female) with no signifi- )
cant channel or background noise effects. Spoofed speesh wa 43 Experimental results
gener_ated fror_n the genuine data using a nu_mber o_f different 43 1. Results of development dataset
spoofing algorithms. The full dataset was partitioned ihte¢
subsets, the first for training, the second for developmadt a ~ The Equal Error Rates (EERs) of spoofing detection perfor-
the third for evaluation. The details of each subset are samm  mance for the development dataset are shown in Table 4. The
rized in Table 2. There was no speaker overlap across the thre modified group delay cepstral coefficient (MGDCC) outper-
subsets regarding target speakers used in voice convession  forms MFCC. The results show the same trend as [11]. Be-
Text To Speech (TTS) adaptation. cause the MGDCC also contains magnitude spectrum informa-
For the training dataset, each spoofed utterance was gener- tion, the spoofing detection performance is not sufficierel- R
ated according to one of three voice conversion and two speec  ative phase information significantly outperforms the MGDC
synthesis algorithms. For the development dataset, spoofe because it normalizes the phase variation by cutting jpositi
speech was generated according to one of the same five spoofing The combination of relative phase with MFCC or MGDCC is
algorithms used to generate the training dataset. For thie-ev also significantly better than the combination of MGDCC with
ation dataset, spoofed data was generated according teelive
spoofing algorithms. They included the same five algorithms
used to generate the development dataset in addition tospthe
designated as “unknown” spoofing algorithms.

cutting section Proposed

cutting section

Figure 2:How to synchronize the splitting section.

4. Experiments
4.1. Datasets

Table 4:EERSs (%) of spoofing detection performance of various
features on development dataset.

4.2. Experimental setup

Features Equal error rate (%)

The input speech was sampled at 16 kHz. For MFCCs, a total MFCC 1.74
of 38 dimensions (12 MFCCs, 12AMFCCs, 12AAMFCCs, MGDCC 0.83
Apower andAApower) were calculated every 10 ms with a Relative phase 0.013
window of 25 ms. Thirty-eight static modified group delay <ep MECC+MGDCC 0.256
stral coefficients (MGDCC) were calculated from Fhe modlfle_d MFCC+relative phase 0.004
group delay function phase spectrum [9]. Relative phase in- MGDCC+relative phase 0.004

Lhttp:/Aww.spoofingchallenge.org/ MFCC+MGDCC+relative phase 0.002




Table 5:EERSs (%) of spoofing detection performance of various featan evaluation dataset.

Features Know Unknown All
attacks attacks attacks
sl s2 s3 s4 s5 Ave. s6 s7 s8 s9 s10 Ave. Ave.
MGDCC — — — — — 1.155 — — — — — 6.761 || 3.958
Relative phase| 0.000 | 0.025 | 0.000 | 0.000 | 0.025| 0.010 || 0.285| 0.005| 1.179 | 0.000 | 37.728 | 7.840 || 3.925
MGDCC+ 0.000 | 0.009 | 0.000 | 0.000 | 0.015| 0.005 || 0.081| 0.005| 0.080| 0.000| 37.068| 7.447 || 3.726
relative phase

MFCC. By combining the log likelihood ratios of three feasir
(two phase related features and one magnitude relatedégatu
a best performance is achieved, that is, the EER is from @6256
of the combination of MGDCC with MFCC to 0.002% of the
proposed method.

phase related features achieved good performance exaept fo
“s10” spoofed speech. The reason may be that the phasedrelate
feature is weak for an unknown voice conversion or speech syn
thesis technique considering phase information.

In our future work, we will try to combine relative phase in-

formation with MGDCC and MFCC for an evaluation dataset.

4.3.2. Results of evaluation dataset

Furthermore, we will try to implement the state-of-the-art

vector based feature representation and PLDA based mgdelin

The Equal Error Rates (EERS) of spoofing detection perfor-
mance on evaluation dataset are shown in Table 5. Because we
cannot submit MFCC based log likelihood ratio to “ASVSpoof
2015 Challenge” in time and we do not have a key file for
the evaluation set, only the phase related results areasiil (1
in this paper. For “known attacks”, the trend of the evalu-
ation dataset is the same as that of the development dataset. [
Our result of the combination of MGDCC and relative phase
for “known attacks” submitted to “ASVSpoof 2015 Challenge”
achieved 2nd place ranking among 16 teams even when using a
very simple GMM based detector without any score normal-
ization. For “unknown attacks”, both phase related feaure
achieved good performance except for “s10” spoofed speech.
The reason may be that the phase related feature is weak for an
unknown “s10” voice conversion or speech synthesis tectniq
considering phase information. However, we do not havesacce

to the detailed analysis as the key file for the evaluationst

was unavailable. In the development dataset, the combimati

of MFCC with two phase related features achieved the best per
formance. It is considered that the performance of “known at
tacks” and “unknown attacks” may be improved when we com-
bine three features. Furthermore, state-of-the-art spesdi-
fication, such as i-vector based feature representatiopiaid
abilistic linear discriminant analysis (PLDA) based maaig|

[24], is also expected to improve the spoofing detectiongperf
mance.

S

(5]
(6]

(7]

5. Conclusions 18]
In this paper, the relative phase information was proposed f
spoofing detection, and was also combined with the MFCC and
modified group delay cepstral coefficient. The proposed atketh
was evaluated with the “ASVspoof 2015 Challenge” dataset.
The results indicated that the proposed relative phasenirafo

tion significantly outperformed the MFCC and MGDCC. For
the development dataset, the EER was reduced from 1.74% of
MFCC, 0.83% of MGDCC to 0.013% of the relative phase.
By combining the relative phase with MFCC and MGDCC, the
EER was reduced to 0.002%.

For the evaluation dataset, the combination of MGDCC and
relative phase for “known attacks” submitted to “ASVSpoof
2015 Challenge” achieved 2nd place among 16 teams, even 13]
although we only used a very simple GMM based detector
without any score normalization. For “unknown attacksthbo

El

(20]

[11]

[12]

for spoofing detection [24].
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