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Abstract 

This paper introduces the Synthetic Speech Detection system 
developed by Aholab for the Automatic Speaker Verification 
Spoofing and Countermeasures Challenge  (ASVspoof 2015). 
The detector is a classifier based on Gaussian Mixture Models 
that are created using the Relative Phase Shift (RPS) 
transformation for the phase information. Different strategies 
have been evaluated: modeling the specific attacks using the 
information provided by the ASVspoof 2015 organizers, and 
modeling the vocoders possibly used in the spoofing signals, 
using data from previous works. The evaluation results show 
that attack specific models work for known attacks but they do 
not cope with the unknown attacks correctly. When using 
vocoder models build with other databases, the results suggest 
that the followed strategy do not take advantage of the 
available data and thus model adaptation should be explored. 

Index Terms: synthetic speech detection, phase information, 
anti-spoofing 

1. Introduction 

In applications like access control, electronic transactions, or, 
in general, secure environments, biometric authentication has 
proven to be highly valuable [1]. But as the use of this kind of 
systems is spreading and becoming more and more common, 
the possibility of being spoofed by counterfeit biometric 
samples is also turning into a real concern.  

In the particular case of the voice, Speaker Verification 
(SV) systems [2][3][4][5] have improved their performance, 
being useful and reliable. Speech signals can be easily and 
non-intrusively obtained, and they have obvious features that 
identify the speaker almost unmistakably. But in recent years 
creating a synthetic voice to deceive a speech driven biometric 
identification system has become feasible and relatively easy. 
Consequently, the concern on the security of these systems 
when attacked with this type of spoofing artificial voices is 
arising [6][7].  

Two strategies have been mainly described in order to gain 
the ability to detect faked voices. The first one focuses on 
improving the verification system itself, working on the 
modeling technique or the parameters used. The aim is to get 
the synthetic impostors detected and blocked by the SV 
system, like it does with the human impostors [8][9][10]. The 
second strategy implies a separate synthetic speech detection 
(SSD) module, that implements specific parameters and 
detection techniques focused on the presumed differences of 
synthetic speech: interframe statistical similarities in some 
parameters [11][12], pitch variations [13], phase information 

[11][14], temporal modulation[15], etc. It can be used before 
or after the SV system. 

This second approach has been successfully used for 
vocoded speech detection in [16]. Since vocoders are used in 
most of the state-of-the art voice conversion and speech 
synthesis systems, and these techniques can be used to create a 
fake voice to attack a SV system, detection of vocoded signals 
can be an effective anti-spoofing countermeasure.  

While module-based parameters (MFCC) are widely used 
in SSD, our system, described in [16], uses only relative phase 
shift (RPS) information to perform the detection. Since most 
popular vocoders do not use phase information, the phase 
differences between a natural signal and a counterfeit have 
proved to be relevant. The capability of this approach to cope 
with synthetic speech attacks was stated in [16]. The system 
performed well even when the spoofing signals were 
generated by unknown TTS systems.  

In the Automatic Speaker Verification Spoofing and 
Countermeasures Challenge (ASVspoof 2015), independent 
SSD modules are evaluated [17]. Participants use specific 
spoofing detection tools on a provided database that contains 
different spoofing techniques such as speech synthesis and 
voice conversion. The performance of the different systems is 
assessed by the organization using standard metrics. Up to 6 
submissions are permitted to the participants, with two 
different types: the ‘common’ submissions must use only 
information from the training database to create the system, 
and the ‘flexible’ submissions can make use of other 
databases. For each type, one of the submissions is designated 
as primary, while the others are designated as contrastive. We 
have submitted 4 different variations of our SSD system using 
different models. 

 In the next section of the paper the detection system is 
described, including the processing applied to the signals 
provided by the organizers and the models created for the 
different SSD variations. Then, the results of the different 
submissions are presented and discussed. Finally, some 
conclusions close the paper. 

2. System Description 

2.1. General Architecture 

In ASVspoof 2015 the SSD system detailed in [16] is used. 
The system is a Gaussian mixture model (GMM) based binary 
classifier, whose purpose is to take a decision about the 
synthetic nature of the input speech signal. Figure 1 shows the 
general architecture of the SSD system.  

The SSD system uses two GMM models for natural 
speech (λhuman) and synthetic speech (λsynth). These models are 



created during the training stage, using vectors of harmonic 
phase based parameters obtained applying the RPS 
transformation to the harmonic instantaneous phases.  

To perform the synthetic speech detection task, the system 
tests a candidate vector sequence Y of length N against both 
natural speech and synthetic speech models to get the 
corresponding likelihood values p(Y|λhuman) and p(Y|λsynth). 
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Then according to (2) the log likelihood ratio Λ is 

calculated, taking the candidate as human if it exceeds a 
certain decision threshold θ which will be set to the Equal 
Error Rate (EER) point in the experiments. For the ASVspoof 
2015 Challenge, the Λ ratios have been submitted for every 
input signal.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: SSD system structure. 

2.2. Signal pre-processing 

Previous to the parameterization step, the signals are 
downsampled to 8 kHz, in order to limit the computational 
load, and their DC component is filtered out. Also, the polarity 
of the signals is homogenized [18], since the RPS 
parameterization is highly sensitive to polarity changes. 

2.3. RPS Parameterization  

The speech signals are parameterized using RPS parameters. 
The RPS is a representation for the harmonic phase 
information described in [19]. Harmonic analysis models each 
frame of a signal by means of a sum of sinusoids harmonically 
related to the pitch or fundamental frequency. 
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In (3), N is the number of bands, Ak are the amplitudes, φk(t)  
the instantaneous phase, f0 the pitch or fundamental frequency 
and θk the initial phase shift of the k-th sinusoid. The RPS 
representation consists in calculating the phase shift between 
every harmonic and the fundamental component (k=1) at a 

specific point of the fundamental period, namely the point 
where φo=0. 

        1k a k o k a at t t k t        (4) 

Equation (4) defines the RPS transformation which allows 
computing the RPSs (ψk) from the instantaneous phases at any 
point (ta) of the signal. The RPS values are wrapped to the  
[-π, π] interval.  

The RPS values are not suitable for statistical modelling, 
so to create and test the models the so-called DCT-mel-RPS 
parameterization is used instead. These parameters, thoroughly 
explained in [20], have produced good results in other tasks 
where statistical modelling is used, such as ASR [20], Speaker 
Recognition [21] and also Synthetic Speech Detection [16] 
tasks. To obtain the parameters, the differences of the 
unwrapped RPS values are filtered with a mel filter bank (48 
filters) and a discrete cosine transform (DCT) is applied to the 
resulting sequence. The DCT is truncated to 20 values and the 
Δ and ΔΔ values are calculated.  

For the experiments, the speech signals are windowed 
every 10 ms (using hamming windows of a length of 3 pitch 
periods) and the RPSs are calculated from the Fourier 
spectrum only for voiced frames. Then the DCT-mel-RPS 
parameterization is applied to every frame and the averaged 
value of the slope of the unwrapped RPS values is also 
included which leads to a total of 63 phase-based parameters.  

2.4. Modelling 

For this challenge 4 different model sets are tested, using both 
data from previous works and the database provided by the 
organization. Each set consists on a natural speech model 
(λhuman) and a spoofing speech model (λsynth). 

The first two sets (designated M1 and M2) have been 
trained using the human and spoofing signals provided by the 
organization. The signals have been used directly to elaborate 
the human and synthetic models. Thus, the synthetic model 
captures the specific features of the known spoofing signals.  

The human and spoofing models used for the first 
submission, designated M1, are generated using only the 
training part of the database provided by the organization. The 
amount of signals used is detailed in Table 1. The spoofing 
methods included are:  

 Two implementations of voice conversion using 
STRAIGHT [22]. 

 Voice conversion using MLSA [23].  

 Two implementations of speech synthesis of adapted 
voices, using STRAIGHT.  

 

The model set is trained with 1024 Gaussian mixtures. It 
fulfills the mandatory conditions for the primary common 
submission. 

The model set M2 is created following the same approach 
as M1, but uses all the available data: both train and develop 
databases, with a total of 7247 genuine signals and 62500 
spoofing, using the same methods that are found in M1. The 
models are trained with 1024 Gaussian mixtures and they are 
used for the primary flexible submission. 

For the M3 model set our multivocoder model created in 
[16] is used. Unlike M1 and M2, M3 is aimed to model the 
vocoded speech instead of the specific attack technique or 
algorithm that will be unknown in realistic spoofing scenarios. 

Synthetic 
model (λsynth) 

( )synthp Y  

( )humanp Y  

Parameterization 
Y 

Input 
voice 

 

Natural 
model (λhuman)

Decision 

   Y



Multivocoder model set was created using the WSJ database 
[24]. The human model is created using a subset of the WSJ 
database containing 8599 natural signals from 283 speakers.  
The synthetic signals are created by means of copy-synthesis 
of the natural ones, using three different vocoders: MLSA, 
STRAIGHT and AHOCODER [25] [26], obtaining 25797 
synthetic signals that are used to create the spoofing speech 
model. The signals provided by the ASVspoof 2015 organizers 
are not used at all to train the M3 model set. The models are 
trained with 512 Gaussian mixtures, and the M3 set is used as 
first flexible contrastive submission. 

The last model set (M4) mixes two different strategies: 
using the provided spoofing samples to improve detection of 
known attacks, and using the multivocoder approach to 
improve the detection of unknown attacks. Consequently, the 
models are created using the provided training set (used for 
M1) together with the WSJ signals used in M3, summing up 
12349 genuine and 38422 spoofing signals. The model set is 
trained with 1024 Gaussian mixtures and used as a second 
contrastive flexible submission. 

Table 1. Signals used to train the models classified by 
vocoder and attack method: Voice conversion (VC), 
adapted speech synthesis (SS), copy-synthesis (CS) 

 M1 M2 M3 M4 
Natural 3750 7247 8599 12349 

VC STRAIGHT 5050 12500 - 5050 
VC MLSA 2525 12500 - 2525 

SS STRAIGHT 5050 12500 - 5050 
CS STRAIGHT - - 8599 8599 

CS MLSA - - 8599 8599 
CS AHOCODER - - 8599 8599 
Spoofing Total 12625 62500 25797 38422 

 

3. Results 

The evaluation dataset provided consists of 9404 genuine 
speech samples and 184000 spoofing ones, detailed in table 2. 
Half of the counterfeit signals were created using the same 
five methods that were known, that is, they were already used 
for the train and development sets (voice conversion using the 
vocoders STRAIGHT and MLSA, and speech synthesis of 
adapted voices, using STRAIGHT). The other half of the 
evaluation database was created using five unknown attacking 
techniques: four STRAIGHT based voice conversion 
algorithms and one new speech synthesizer, Mary TTS [27], 
which does not use any vocoder. 

Table 2. Signal amounts used to test the models. 

Subset Characteristics Known Amount of signals 
N Natural Yes 9404 
S1 VC/STRAIGHT Yes 18400 
S2 VC/STRAIGHT Yes 18400 
S3 SS/STRAIGHT Yes 18400 
S4 SS/STRAIGHT Yes 18400 
S5 VC/MLSA Yes 18400 
S6 VC/STRAIGHT No 18400 
S7 VC/STRAIGHT No 18400 
S8 VC/STRAIGHT No 18400 

S9 VC/STRAIGHT No 18400 
S10 Vocoderless No 18400 

The following results were obtained by computing the 
EER with the submitted likelihoods for each test signal.  

Table 3. EER (%) of the 4 Aholab submissions. 

Model 
Known 
attacks 

Unknown 
attacks 

All attacks 

M1 (Common 
Primary) 

0.210 8.883 4.547 

M2 (Flexible 
primary) 

0.154 8.918 4.536 

M3 (Flexible 
Contrastive 1) 

9.845 17.371 13.608 

M4 (Flexible 
Contrastive 2) 

2.042 11.291 6.667 

 
Figures in table 3 show that both M1 and M2 model sets 

perform reasonably well, with EER values below 0.25%, when 
coping with signals generated with attack methods that were 
present in the models. But the error with unknown spoofing 
attacks rises to figures near 9%. Several factors explain this 
degradation of the performance: 

 Different attacks types can show very different RPS 
features, thus modeling specific attacks does not assure 
coverage of unknown ones. In fact, the bad error rate 
obtained for Mary TTS completely burdens the averaged 
performance of the system. Mary TTS is based in unit 
selection where no vocoder is used, and this kind of 
system was out of the domain of the training material. 

 Harmonic analysis necessary to obtain the RPS features 
requires a certain quality in the signals. Some attacking 
methods can degrade the quality to a point that makes 
the RPS parameterization incorrect.  

 The simple GMM classifier used has no further 
mechanism to detect unknown attacks. 

 
The case of the M3 model requires a separate analysis: it 

was created using a completely different database, not 
including the provided test or development database signals. 
Therefore, every signal in the test was unknown, even those 
designated as ‘known attacks’. The performance of the system 
with this model set is poor, with EER values near 10% and 
beyond. There are some relevant points that are worth 
indicating: 

 The generalization capability of the multivocoder 
models that was reviewed in [16] did not work with the 
provided evaluation signals.  

 Internal experiments show that the score of the human 
signals of the ASVspoof 2015 database when tested with 
the M3 model set are unexpectedly low. This suggests 
an underlying difference in the human signals from both 
databases. This difference can be due to recording 
conditions modifying the phase structure and it needs 
further study.  

 Most spoofing attacks in the evaluation set were 
generated using voice conversion systems. The 
capability of the system to detect synthetic speech was 
well established in [16], where the performance of these 



same models was remarkable for vocoder-based 
unknown speech synthesis. But the performance of the 
system on voice conversion spoofing had not been tested 
before, and it requires further study.  

 Again, the presence of the Mary TTS synthetic speech in 
the test set is relevant, since the system is not capable of 
detecting speech synthesis algorithms that do not make 
use of vocoders.  

 In the last few years, several versions of the MLSA and 
STRAIGHT vocoders have been developed that in 
practice perform like different vocoders in terms of 
phase, thus raising the error rate. 

 

The results of the detection performed with the M4 model 
set are coherent with a design that models both vocoders like 
in M3 and specific attacks like in M1 and M2. The EER is 
between the values performed with M3 and those from M1 
and M2.  

Table 4. Results of every participant in the  
ASVspoof 2015 challenge. 

Team 
Known 
attacks 

Unknown 
attacks 

All attacks 

A 0.408 2.013 1.211 
B 0.008 3.922 1.965 
C 0.058 4.998 2.528 
D 0.003 5.231 2.617 
E 0.041 5.347 2.694 
F 0.358 6.078 3.218 
G 0.405 6.247 3.326 
H 0.67 6.041 3.355 
I 0.005 7.447 3.726 
J 0.025 8.168 4.097 
K 0.21 8.883 4.547 
L 0.412 13.026 6.719 
M 8.528 20.253 14.391 
N 7.874 21.262 14.568 
O 17.723 19.929 18.826 
P 21.206 21.831 21.518 

 
Table 4 shows the Primary Common Submission result for 

every participant in ASVspoof 2015, being Aholab the one 
designated ‘K’. It’s worth pointing that the rank is elaborated 
in the base of the ‘All attacks’ column, but those really 
decisive, because of the greater difficulty of the task, or the 
balance of the known and unknown attacks in the test 
database, are the unknown ones. In the Aholab case, those 
have been particularly burdening, and further research is 
necessary to get a generalization capable system, mostly in the 
detection of signals created with voice conversion techniques. 

4. Conclusions 

The Aholab submission to the ASVspoof 2015 Automatic 
Speaker Verification Spoofing and Countermeasures 
Challenge is a binary classifier based on human and synthetic 
GM models of DCT-mel-RPS parameters. Two different 
strategies have been tested: attack modeling using the training 

signals provided by the ASVspoof 2015 organizers, and 
vocoder modeling using data from previous works.   

With models of specific attacks, the proposed architecture 
got promising results with signals similar to those used to 
create the models. The unknown attack performance is largely 
biased by Mary-TTS synthesizer, but it seems to be worse than 
that from the known attacks. This can be explained based on 
the basic GMM classification system and the RPS parameters 
modeling the specific attacks instead of the underlying 
vocoder. 

The performance of the system is modest for models 
created to detect vocoded speech, in contrast to our results in 
previous works. We have found that these models perform 
particularly poorly with human signals from the ASVspoof 
2015 Challenge database, probably due to phase treatment 
differences between the WSJ signals used to create the model 
and the evaluation signals. Some model adaptation technique 
should be applied to solve this issue. Without more detailed 
results, other reasons that probably contribute to this high error 
rate are the inclusion of a unit selection system among those to 
be tested, and the presence of voice conversion attacks, which 
had not been previously evaluated.  
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