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Abstract
Recent improvement in text-to-speech (TTS) and voice con-
version (VC) techniques presents a threat to automatic speaker
verification (ASV) systems. An attacker can use the TTS or
VC systems to impersonate a target speaker’s voice. To over-
come such a challenge, we study the detection of such synthetic
speech (called spoofing speech) in this paper. We propose to
use high dimensional magnitude and phase based features and
long term temporal information for the task. In total, 2 types of
magnitude based features and 5 types of phase based features
are used. For each feature type, we build a component sys-
tem using a multilayer perceptron to predict the posterior prob-
abilities of the input features extracted from spoofing speech.
The probabilities of all component systems are averaged to pro-
duce the score for final decision. When tested on the ASVspoof
2015 benchmarking task, an equal error rate (EER) of 0.29%
is obtained for known spoofing types, which demonstrates the
highly effectiveness of the 7 features used. For unknown spoof-
ing types, the EER is much higher at 5.23%, suggesting that
future research should be focused on improving the generaliza-
tion of the techniques.
Index Terms: Spoofing attack, voice conversion, automatic
speaker verification, phase feature, ASVspoof 2015.

1. Introduction
Automatic speaker verification (ASV) is the verification of a
speaker’s identify based on his/her speech signals [1]. There are
many applications of ASV technology, such as access control.
Due to the high security requirement of these applications, ASV
system is required to be robust against malicious attacks.

Recently, advancement in text-to-speech (TTS) and voice
conversion (VC) technologies makes possible high quality syn-
thesis of any speaker’s voice, provided that certain amount of
training data of the speaker is available. Such capability im-
poses a significant threat to ASV systems, as the attacker can
compromise the ASV system by using TTS or VC systems to
synthesize the speech of the target speaker. To address this
threat, the ASVspoof 2015 challenge [2] is introduced as a
benchmark to measure the progress in spoofing speech detec-
tion. This paper describes the Nanyang Technological Univer-
sity (NTU) team’s effort in participation of the open challenge.

There are two major ways to address the threat of spoofing
attack [3], one is to improve the robustness of the ASV system
itself. In [4, 5], various ASV systems are studied in terms of

their robustness against spoofing attacks, such as the joint factor
analysis (JFA), Gaussian mixture model-universal background
model (GMM-UBM), etc. These works are more focused on
the speaker identity verification but less on the spoofing speech
detection. Another way to address the threat is to add a screener
that detects whether the incoming speech is natural speech or
synthetic speech. If a synthetic speech is detected, the screener
will directly reject it, hence protecting the ASV facility.

Several spoofing speech detection methods have been pro-
posed in the past. The synthetic speech from hidden Markov
model (HMM) based TTS system was studied in [6–8] and
speaker adapted statistical TTS system was studied in [9]. The
synthetic speech generated by VC techniques [10–12], have
been studied in [5, 13–16]. Most of these works heavily rely
on GMM-based classifier, which only allows the use of low
dimensional features for spoofing speech detection, such as
Mel-frequency cepstrum coefficient (MFCC) [4–8] and modi-
fied group delay based features [17–19].

In this paper, we propose to use high dimensional speech
features derived from both magnitude and phase spectra for de-
tecting spoofing speech. In addition, we concatenate feature
vectors within a window to incorporate long term temporal in-
formation. To handle the high dimensional feature vectors, mul-
tilayer perceptron (MLP) neural network is used to predict the
posterior probabilities of the test speech being spoofing speech.

The rest of the paper is organized as follows. The
ASVspoof 2015 challenge is briefly introduced in section 2.
The overview of our system is proposed in section 3. The ex-
traction of various features are described in section 4, followed
by experimental results and discussions in section 5. Finally,
conclusion and future works are presented in section 6.

2. Task Description
The ASVspoof 2015 challenge is designed to be a benchmark-
ing task for spoofing speech detection. Three data sets are pro-
vided, including training, development, and evaluation sets, and
their statistics are listed in Table 1. There are totally 10 spoofing
types, from S1 to S10. The first 5 types (S1-S5) exist in all data
sets and are called “known types” as they are used for system
building. The last 5 types (S6-S10) are “unknown types” only
exist in the evaluation set. The known types are: S1) frame se-
lection based VC; S2) VC that modifies the first Mel cepstral co-
efficient; S3) HMM-based TTS adapted to target speaker using
20 sentences; S4) same as S3 but using 40 adaptation sentences



Table 1: Statisitics of the ASVspoof 2015 data sets. The speak-
ers in the three data sets are non-overlapping.

Set #Speaker #Utterances Spoofing TypesM F Genuine Spoofed
Train 10 15 3,750 12,625 S1-S5
Dev 15 20 3,497 49,875 S1-S5
Eval 20 26 9,404 184,001 S1-S10

per speaker; S5) GMM-based VC considering global variance.
As this is a detection problem, the official system perfor-

mance measure of ASVspoof 2015 is equal error rate (EER),
which is the rate when the false alarm rate is equal to the miss
rate. To obtain a more complete view of system performance,
we also use the detection error tradeoff (DET) curve [20] for
system evaluation on the development data for which we know
the ground truth of whether a sentence is natural or spoofing.
For more details of the task, the readers are refer to [2].

3. The NTU Approach
The proposed system is illustrated in Fig. 1. There are multi-
ple component systems, each using a specific type of features.
The scores of component systems are fused to generate the fi-
nal score, one number for each test utterance. The final score is
used to decide whether a test utterance is spoofing speech.

The use of multiple component systems is motivated by the
fact that no single type of feature is able to detect all types of
spoofing speech. As the spoofing speech may be generated by
various types of TTS and VC methods, they may have different
artefacts. A single type of features is usually good at detecting
certain types of artefacts, but not all. Hence, it is wise to build
multiple “expert” systems, each focusing on detecting certain
types of artefacts by using one type of features, and to fuse
their scores. The fusion can take many forms, such as voting
or linear combination. In this study, we compute the final score
as the simple average of component systems’ scores instead of
weighted average to avoid overfitting to the development data
which does not contain the “unknown” spoofing types.

For each component system, an MLP is trained to predict
the posterior probability of the input feature patch extracted
from spoofing speech. A feature patch consists of 51 consec-
utive feature frames. We use 0.025s frame length and 0.01s
frame shift, hence a feature patch covers about 0.5s temporal
context. From each utterance, a sequence of feature patches are
extracted with 50 frames overlap. Due to the use of long tem-
poral context, the final feature vector (obtained by converting a
feature patch into vector form) is of very high dimension, e.g.
more than 10,000 elements. Such high dimensional features
cannot be modelled by conventional classifiers in speech pro-
cessing, such as GMM-based generative models. Therefore, we
use MLP as the classifiers since it has no limitation on input fea-
ture dimensions. During the training, the spoofing speech de-
tection is treated as a 2-class classification problem. The MLP
contains 1 hidden layer with 3,072 sigmoid nodes and is trained
to predict whether a feature patch is from natural or spoofing
speech. During testing, the posterior probabilities of all feature
patches of a test speech are averaged to produce one single pos-
terior for each component system. A pitch based voice activity
detector (VAD) is used to discard scores of silence patches. Fi-
nally, the component system scores are averaged to produce the
final score for spoofing detection.
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Figure 1: System architecture

4. Feature Extraction
In this study, 7 types of features are used, including 2 magni-
tude based features and 5 phase based features. These features
are described in detail in the following sections and their ex-
amples are shown in Fig. 2. All features are extracted from the
short time Fourier transform of the speech signal, which can be
expressed as:

X(t, ω) = |X(t, ω)|ejθ(t,ω), (1)

where, |X(t, ω)| and θ(t, ω) are the magnitude and phase spec-
tra at frame t and frequency bin ω, respectively. The frame
length and frame shift are set to 0.025s and 0.01s, respectively,
except for the pitch synchronous phase (PSP) features for which
variable frame lengths and shifts are used. As the speech sig-
nal of ASVspoof 2015 challenge is sampled at 16kHz, a frame
length of 0.025s contains 400 samples, so the FFT length is set
to 512. By retraining only half of the symmetric spectrum, the
dimensionality of both phase and magnitude based features will
be 256. After concatenating 51 frames of features, the input di-
mension of all component system MLPs is 51×256 = 13, 056.
In the following sections, the details of extracting the 7 types of
featuers will be described.

4.1. Log Magnitude Spectrum (LMS)

The log magnitude spectrum feature is simply LMS(t, ω) =
log(|X(t, ω)|). An example of LMS feature is shown in Fig. 2a.
The magnidue spectrum contains all the detailed information
about the speech signal, such as formant, pitch, and harmonic
structure of vowel sounds. The logarithm is used to reduce the
dynamic range of the magnitude spectrum, making them suit-
able to use as features.

4.2. Residual Log Magnitude Spectrum (RLMS)

The formant information in LMS is important for speech recog-
nition, but may not be useful for spoofing detection as most of
the spoofing techniques, such as VC or TTS, are good at mod-
elling the formant of speakers. To remove the effect of formant,
we also extract the LMS using (1) from the residual waveform
of linear predictive coding (LPC). In the LPC analysis of speech



Figure 2: Demonstration of the 7 types of features for utterance D15 1000931, which is a natural speech from the development set. For
each feature type, only the low half of the frequency bins are shown.

signals, the formant information are mostly carried by the LPC
coefficients, and the LPC residual waveform mainly contains
the details of spectrum such as harmonics. It can be observe
from Fig. 2b that the formant are gone in the RLMS features.

4.3. Group Delay (GD)

The phase spectrum does not contain stable patterns for spoof-
ing speech detection due to phase warping (see Fig. 2h). Hence,
it is necessary to process the phase spectrum to generate useful
features for spoofing detection. The first phase based features
used in this study is called group delay (Fig. 2c) which is the
derivative of phase spectrum along the frequency axis.

GD(t, ω) = princ{θ(t, ω)− θ(t, ω − 1)} (2)

where princ(·) represents the principal value operator, mapping
the input onto [−π, π] interval by adding integer numbers of 2π.
From Fig. 2c, harmonic structure is revealed in the group delay.

4.4. Modified Group Delay (MGD)

The modified group delay (MGD) [21] is an improved version
of GD. The MGD feature is computed as follows:

MGD =
τ(t, ω)

|τ(t, ω)| |τ(t, ω)|α (3)

τ(t, ω) =
XR(t, ω)YR(t, ω) + XI(t, ω)YI(t, ω)

|S(t, ω)|2γ (4)

where Y(t, ω) is the complex spectrum computed from signal
nx(n) and S(t, ω) is a smoothed version of |X(t, ω)|. The sub-
scripts R and I denotes real and imaginary parts of the complex
spectrum, respectively. The two tuning parameters γ and α are
set to 1.2 and 0.4 respectively. By comparing Fig. 2c and d, the
MGD has more stable patterns than the GD.

4.5. Instantaneous Frequency Derivative (IF)

While the group delay is the derivative of phase along the fre-
quency axis, the instantaneous frequency is computed as the
derivative of the phase along the time axis [21]:

IF(t, ω) = princ(θ(t, ω)− θ(t− 1, ω)) (5)

By comparing Fig. 2c and e, the IF and GD contain very differ-
ent patterns, which could provide complementary information
for spoofing speech detection.

4.6. Baseband Phase Difference (BPD)

To obtained more stable time-derivative phase based features,
we also extract BPD feature [22] as follows:

BPD(t, ω) = princ(IF(t, ω)− ΩtL) (6)

where L is the frame shift in terms of number of samples, and
Ωt = 2πk/N is a frequency dependent constant, and N is the
FFT length. Fig. 2f shows that the BPD contains different pat-
terns from IF (Fig. 2e).

4.7. Pitch Synchronous Phase (PSP)

Besides the above described phase processing, another way to
reveal the patterns in phase spectrum is to use pitch synchronous
analysis window. Speech consists of periodic and aperiodic
signal. To extract the periodic information, the signal should
be framed by using pitch period instead of using fixed frame
length. Glottal closure instant (GCI) [23] is used to determine
the location of the beginning and the end of each pitch period.
Two consecutive pitch periods are joint to form one frame. The
overlap between two consecutive frame is set to one pitch pe-
riod. As pitch period changes along the signal, the overlap size
varies according to second pitch period in the frame. The stable
periodic patten of PSP could be observed in Fig. 2g.



Table 2: EER obtained by component systems and fused system
on development set. The system numbering (a to g) are the same
as the numbering in Fig. 3.

1 2 3 4 5
a LMS 0.347 0.254 0.054 0.054 1.603 0.543
b RLMS 0.000 0.093 0.039 0.039 1.456 0.486
c GD 0.054 0.054 0.039 0.000 0.161 0.114
d MGD 1.148 2.311 0.147 0.147 2.311 1.572
e IF 0.161 0.401 0.147 0.147 0.948 0.428
f BPD 2.243 4.955 0.401 0.347 5.155 3.431
g PSP 1.950 1.456 0.093 0.054 1.402 1.345

a-g Fusion 0.044 0.000 0.000 0.442 0.144 0.001

Natural against individual spoofing 
types All 

typesSystems

Table 3: EER (%) on evaluation set by the fused system.
Known attacks Unknown attacks

Avg.
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 26.1 2.62

5. Experimental Results
5.1. Results on Development Set

The EER obtained by component systems and their fusion are
listed in Table 2 and the DET curves are plotted in Fig. 3. From
the EER and the DET curves, there is no obvious correlation be-
tween the performance of the features and how obvious their vi-
sual patterns are. For example, MGD is considered as more sta-
ble phase features than GD, however, the performance of MGD
is much worse than that of GD. This could be due to that the
patterns shown in Fig.2 may not be necessarily the most useful
information for spoofing speech detection. The fusion of the 7
systems produces close to zero EER and its DET curve cannot
be seen in Fig. 3.

To understand how complementary the componenet sys-
tems are, we add them to the fusion system one by one. At the
begining, the fusion set contains the best single system c. Then,
we add system e to the fusion set as it leads to the best EER. The
process continues until all component systems are added to the
fusion set. The EER obtained at each stage is shown in Fig. 4.
It is observed that at most times adding a component system
reduce the EER significantly and the lowest EER is obtained
when all the 7 component systems are fused. This shows that
the component systems, and the features they used, are highly
complementary for the task of spoofing speech detection.

5.2. Results on Evaluation Set

The EER on the evaluation set obtained by the fusion systems
are shown in Table 3. The EER on both “known” and “un-
known” spoofing types are mostly zero or very small, except
for type S10 where the EER is 26.1%. On average, the EER on
“known” and “unknown” spoofing types are 0.29% and 5.23%,
respectively. The good performance on S6-S9 spoofing types
show that the trained systems generalized well to some unseen
spoofing types. The poor performance on S10 may be due to the
7 types of features do not contain useful information to detect
S10 or the MLP classifiers are not tuned to discover the infor-
mation contained in the features that is useful to differentiate
S10 spoofing speech from natural speech.

Figure 3: DET curves on development set. The DET curve of
the fusion system cannot be seen in the plot as the EER is close
to 0.
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Figure 4: EER at each step of the greedy fusion procedure.

6. Conclusion
In this paper, we described the NTU system for the ASVspoof
2015 spoofing speech detection task. We built 7 component
systems using different features. Their scores are averaged to
produce the final score for detection. Both high dimensional
magnitude and phase based features are used, and long term
temporal information up to 0.51s is exploited. To handle the
high dimensional features, MLP is used as the classifier and
trained to predict posterior probabilities of the incoming sen-
tence being spoofing speech. We observe that EER on most
known and unknown spoofing types are zero or very small ex-
cept for one type of spoofing speech. Future research may be
carried out to understand exactly which information are useful
for spoofing speech detection and also to improve the general-
ization capability of the proposed system.
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