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Abstract 

The automatic speaker verification spoofing and 
countermeasures challenge 2015 provides a common 
framework for the evaluation of spoofing countermeasures or 
anti-spoofing techniques in the presence of various seen and 
unseen spoofing attacks. This contribution proposes a system 
consisting of amplitude, phase, linear prediction residual, and 
combined amplitude - phase-based countermeasures for the 
detection of spoofing attacks. In this task we use following 
features: Mel-frequency cepstral coefficients (MFCC), product 
spectrum-based cepstral coefficients, modified group delay 
cepstral coefficients, weighted linear prediction group delay 
cepstral coefficients, linear prediction residual cepstral 
coefficients, cosine normalized phase-based cepstral features 
(CNPCC), and a combination of MFCC-CNPCC. The product 
spectrum-based features are influenced by both the amplitude 
and phase spectra. The Gaussian Mixture Model (GMM) 
classifier is used for the discrimination of the human and 
spoofed speech signals. Our primary submitted system is a 
linear fusion of the sub-systems based on the features 
mentioned above with fusion weights trained on the 
development dataset. Experimental results on the challenge 
evaluation data provided an average EER (equal error rate) of 
0.041%, 5.347%, and 2.69% on the known, unknown and all 
(known + unknown) spoofing attacks, respectively. Among all 
the systems product spectrum-based cepstral coefficients- and 
conventional MFCC (without any feature normalization)-
based systems performed the best in terms of EER measure. 
On the known, unknown and all conditions the EER obtained 
by the MFCC and product spectrum-based features are 0.78%  
& 0.65%, 5.39% & 5.37% and 3.09% & 3.01%, respectively. 

Index Terms: spoofing countermeasures, modified group 
delay, cosine normalized cepstrum, product spectrum, LP 
residual cepstrum, GMM 

1. Introduction 

Speaker verification systems have become increasingly 
popular in the last few years. In a speaker verification system a 
binary decision is made for accepting to rejecting a claimed 
identity based on a speech recording. Speaker recognition 
systems have been incorporated into a number of forensic, 
civilian, and commercial applications. Some examples of its 
applications include computer or smart phone log in, telephone 
banking, calling cards. Given its widespread usage researchers 
have analyzed the vulnerability of speaker verification systems 
to various types of spoofing attacks such as impersonation [1], 
replay attacks [2], voice conversion [3, 4] and speaker-adapted 
speech synthesis [5]. 

Progress in the development of efficient spoofing 
countermeasures is less advanced in case of automatic speaker 
verification (ASV) than some other biometric modalities [6]. 

Some efforts [2, 8-18] have been made by different research 
groups to develop countermeasures for ASV, mostly for text-
dependent ASV, by exploiting prior knowledge of particular 
spoofing attacks. The ASVspoof 2015 challenge (the first 
ASV spoofing and countermeasures challenge) [7] provides a 
common ground with standard corpus, protocols and metrics 
to facilitate the performance comparison of different spoofing 
countermeasures against known as well as unknown spoofing 
attacks.  

Most of the successful spoofing countermeasures reported in 
the literature are based on phase [12-13, 20, 22].  In this 
ASVspoof 2015 challenge we use amplitude (e.g., MFCC)-, 
phase (e.g., cosine normalized phase-based cepstral 
coefficients (CNPCC))-, and combined amplitude - phase (e.g., 
product spectrum cepstral coefficients, MFCC-CNPCC)-based 
countermeasures for the detection of spoofing attacks. The 
standard Gaussian Mixture Model (GMM) classifier is used 
for this task. Our primary submitted system is based a linear 
fusion [19] of subsystems with fusion weights estimated from 
the development test data by logistic regression.  

2. Spoofing Countermeasures 

In this section we briefly describe the features used in this 
evaluation as spoofing countermeasures. 

2.1. MFCC as Spoofing Countermeasures 

In spoofed speech, specifically in synthesized or voice 
converted speech, the original phase information is lost. 
Therefore, against spoofing attacks phase-based features tend 
to outperform the amplitude-based feature, such as MFCC [12-
13, 20]. Steps involved in the extraction of MFCC are shown 
in fig. 1. It has been observed by doing spoofing detection 
experiment on ASVspoof 2015 development dataset that 
MFCC feature (without applying any kind of feature 
normalization) can provide comparable performance to that of 
the phase (e.g., modified group delay)-based features.  

2.2. Normalized Phase-based Countermeasures 

A key problem with the phase spectrum is phase wrapping 
which results in an intractable, noise-like, and chaotic shape 
lacking any informative trend. This problem can be dealt with 
phase unwrapping methods [20, 23-25]. Phase unwrapping 
converts a wrapped phase signal to a continuous phase signal 
that is free from 2 jumps. After unwrapping, the range of the 
phase spectrum might vary which makes it difficult to model 
the phase information. Application of the cosine function on 
the unwrapped phase normalizes the range into 1 [20]. From 
this normalized phase spectra cepstral coefficients are obtained 
by applying a DCT (Discrete Cosine Transform). Here, we 
denote this feature as cosine normalized phase-based cepstral 
coefficients (CNPCC). Fig. 1 presents the CNPCC extraction 
block diagram.   



2.3. Joint MFCC-CNPCC Countermeasures 

MFCC-CNPCC features, as shown in fig. 1, can be obtained 
by concatenating MFCC and CNPCC features. These features 
are influenced by both the amplitude and phase spectra. 

 

Figure 1: Conventional MFCC,  phase-based feature 
CNPCC and joint Amplitude & phase-based  
countermeasures MFCC-CNPCC extraction steps. 

2.4. Modified Group Delay-based Countermeasures 

The negative derivative of the phase spectrum is known as 
group delay function and it is expressed as: 
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where  X  is the Fourier transform of   ,x n  Y   is the 

Fourier transform of    y n nx n , and the subscripts R and I 

denote the real and imaginary parts, respectively.  
If the zeros of the system transfer function are not close to the 
unit circle the group delay function behaves well [26-29]. The 
modification of the group delay function, introduced in [26], is 
performed by suppressing the zeros of the transfer function. 
This is done by replacing the magnitude spectrum  X   by 

its cepstrally smoothed version  S   and by introducing two 

parameters  ( 0 1  ) and   ( 0 1  ) to control the 
dynamic range. The modified function is given by 
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         R R I IP X Y X Y      is known as the product 

spectrum. Cepstrally smoothed spectra  S  are obtained 

using the following the steps [13]: 
 
 Take the log of  X  to obtain the log amplitude 

spectra and smooth it by applying median filter with a 
window of 5. Apply a DCT to the log spectra and take 
the first 30 cepstral coefficients. 

 Apply the inverse DCT to the cepstral coefficients to 
obtain cepstrally smoothed spectra  S  . 

As shown in fig. 2, after computing  P  and  S   the 

modified group delay function (MGDF) is obtained using 
eqns. (2)-(3) by selecting optimal values for the parameters 
 and .  Here, we found the optimal values for the tuning 

parameters are 0.1.   The modified group delay cepstral 
coefficients (MGDCC) or modified group delay filterbank 
cepstral coefficients (MGDFCC, when the filterbank is 
integrated) by applying DCT to the MGDF and taking the first 
q=12 coefficients (excluding c0). Delta and double delta 
features are added. Finally, non-speech frames are removed 
using the VAD label files.  
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Figure 2: Schematic diagram showing various steps to 
extract spoofing countermeasures based on modified 
group delay and product spectrum. 

2.5. Product Spectrum based Countermeasures 

The product spectrum  P  was first introduced in [27] for a 

speech recognition task. It helps to mitigate the effect of zeros 
in the group delay function. It is defined as the product of 

power spectrum   2
X  and the group delay function 

 g  and expressed as: 

             2
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Eqn. (4) indicates that the product spectrum incorporates 
information from both the amplitude and phase spectra and 
therefore, this feature may be a good candidate for spoofing 
detection and speaker verification. Figure 2 provides an 
overview of the MFCC feature extraction procedure from the 
product spectrum. 

2.6. All-pole Group Delay-based Countermeasures  

Because of the excitation source and also due to an artifact of 
short-time processing [24, 25] some zeros can occur in the 
vicinity of the unit circle. Calculation of the group delay 
function using eqn. (1) at frequency bins near these zeros thus 
results in high amplitude spurious peaks. These peaks mask 
out the formant structure [27, 30]. Modified group delay [26], 
product spectrum [27], and chirp group delay [30], all-pole 
group delay [24-25] functions have been proposed to alleviate 
the problem associated with group delay. In all-pole modeling 
the idea is to keep only the vocal tract (filter) component of 
the speech signal and discard the contribution due to the 
excitation source. This can be approximated by extracting the 
spectral envelope of the speech signal via all-pole modeling. 
Fig. 4 presents different steps for the extraction of cepstral 
features from the all-pole group delay function. 



p

 

Figure 3: All-pole group delay-based countermeasures 
extraction stages. 

Once pre-processing (i.e., pre-emphasizing, framing and 
windowing) is done perform all-pole modeling (e.g., linear 
prediction (LP) with a model order p  to obtain the 

autoregressive (AR) coefficients   , ,a k ma 1,2,..., ; k p  

1,2,..., ;m M where k is the index for AR coefficients and 
m is the frame index. Compute the phase response from the 
AR coefficients .a  Here, we use weighted LP (WLP) [33] for 
all-pole analysis with prediction order 80.p  The group delay 
is calculated by taking the negative derivative of the phase 
response. Cepstral coefficients are obtained by applying a 
DCT on the group delay function. We keep the first q 
coefficients (here, q = 12) excluding the 0-th cepstrum and we 
append delta and double delta features to form 3q dimensional 
features.  
Note that, no compression (logarithmic or power-law 
nonlinearity) is needed to compute cepstral features from the 
phase spectra or group delay function. This is because 
multiplication of Fourier transform of two signals (e.g., source 
and filter) corresponds to addition of their phase spectra [24]. 

2.7. LP Residual-based Countermeasures 

In LP analysis each sample is predicted as a linear weighted 
sum of the past p samples as: 
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where p is prediction order,  x n is current sample, and 

 ka are LP coefficients. The residual  r n is the prediction 

error obtained as the difference between the predicted speech 
sample  x̂ n and the actual speech sample as: 
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If the proper prediction order (in the range pf 8-20 for a 8kHz 
sampled signal) is used the LP residual mostly contains the 
excitation source information [31, 32]. In this work we use p = 
24 as the sampling frequency of challenge data is 16kHz. It is 
evident that  r n might contain information which has not 

been captured by the LP coefficients of the actual signal and 
which can be used for speaker recognition [32] and spoofing 
detection tasks. In this work we propose LP residual cepstral 
coefficients (LPRC) as a countermeasure for spoofing attacks.  
Fig. 4 depicts the various steps involved in the extraction of 
LPCC (linear prediction cepstral coefficients) and LPRC 
countermeasures by performing LP analysis of actual and the 
residual signals, respectively, and then converting the LP 
coefficients directly to cepstral coefficients.  Energy computed 
(without applying any pre-processing) from the raw signal is 

appended before computing derivative features. It is observed 
from fig. 5 that LPRC is more discriminative than LPCC for 
distinguishing human speech from spoofed speech. 

24p 

24p 

 

Figure 4: Block diagram showing various steps to 
extract linear prediction cepstral coefficients (LPCC) 
and linear prediction residual cepstral coefficients 
(LPRCC) by performing LP analysis of actual speech 
signal and residual signal, respectively.   

 

 

Figure 5: Comparison of human and spoofed speech 
(using voice conversion) for a frame when LPCC and 
LPRC countermeasures are used. 

3. Experiments 

3.1. Features and Training of Models 

In this work we use features described in section 2 as spoofing 
countermeasures. The Feature dimension is 39 (including log 
energy, delta and double deltas) for all systems except the 
MFCC-CNPCC. The MFCC-CNPCC feature dimension is 25 
(12-dimensional MFCC + 12-dimensional CNPCC + log 
energy, no derivatives are used). Without the energy feature 
dimension is 36. No Feature normalization is applied. Non-
speech frames were removed using VAD (voice activity 
detector) segmentations generated by a GMM-based VAD [34, 
35].  

A 512-component Gaussian Mixture Model (GMM) is used 
for training the human speech and synthetic speech models,   

h  and .s  Then, given the feature vector sequence O of a 



test speech signal, the human or synthetic speech is decided 
based on the following log-likelihood ratio: 
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For each countermeasure we train a human speech model 
using the provided human (i.e., natural) speech signals and six 
synthetic speech models using the provided synthetic speech 
signals generated by the five different spoofing techniques 
(denoted as S1, S2...,S5) [7]. The sixth model is trained by 
pooling the all the synthetic speech signals of the five spoofing 
techniques mentioned in the evaluation plan.  

3.2. Results and discussion 

The countermeasures discussed in section 2 are evaluated on 
the ASVspoof 2015 challenge evaluation and development test 
data. Equal Error rate (EER) is used as evaluation metric.  

Results, in terms of percentage EER, obtained with different 
countermeasures and with the primary submitted system 
(FUSED) on the challenge evaluation data are reported in table 
1. Among the individual systems PS-MFCC and MFCC 
outperformed other systems in unknown and All conditions. In 
known condition MFCC-CNPCC is the 2nd best system after 
FUSED system. Overall, PS-MFCC provided reduced EER 
compare to other individual systems. The advantage of PS-
MFCC is that it is database independent. Unlike 
MGFCC/MGDCC and WLP-GDCC it dies not have any 
tuning parameters.   

Table 1. Spoofing performance on the challenge 
evaluation data using a standard GMM classifier with 
various features as countermeasures and with fused 
system (CRIM's primary system). Lower EERs are 
highlighted with orange color. 

EER (%) 
 

Known Unknown All 

MFCC 0.785 5.398 3.091 

MFCC-CNPCC 0.450 6.599 3.525 

PS-MFCC 0.652 5.372 3.011 

MGDFCC 1.003 5.704 3.3539 

MGDFCC (w/o E) 2.053 7.061 4.557 

MGDCC 1.924 7.124 4.524 

WLP-GDCC 1.436 8.941 5.188 

FUSED 0.041 5.347 2.694 

 

Spoofing detection performance of the FUSED system against 
different spoofing techniques present in the evaluation set is 
given in table 2. It is observed from the results that the average 
EER obtained by the FUSED system over all spoofing 
techniques but S10 is 0.0604%. The reason behind this very 
good result on known (S1-S5) and unknown (S6-S9) attacks is 
the use of similar vocoding technique (STRAIGHT) in the 
training and evaluation data. It is mentioned in [36] that no 
vocoder was used in spoofing technique S10 synthesis. 
Vocoder mismatch between the training and evaluation data 
resulted an EER of 26.39% on the S10 attack. These results 
depict that though a countermeasure can provide a good result 

on known and vocoder matched attacks, it may not perform 
well on mismatched vocoded and unknown spoofing attacks.  

Since the scores with LPCC and LPRC systems were not 
ready before the submission of primary system's results the 
FUSED system did not include these two features. As the keys 
for the evaluation data have not been released yet, in Table 3, 
we reported results of LPRC and LPCC systems on all 
development (All-dev) test data. In this case, spoofed models 
were trained on only S1 spoofed data. All-dev contains one 
known attack S1 and four unknown attacks S2-S5. The LPRC 
countermeasure system performed very well as the EER 
obtained by it is 0.735% on All-dev test set and this is the 
lowest EER compared to the results obtained with other 
systems. This indicates that LPRC is able to give good 
performance both on known and unknown attacks. 

Table 2. Spoofing detection performance against 
various known (S1-S5) and unknown (S6-S10) 
spoofing attacks on the challenge evaluation data with 
CRIM's primary system. We use a standard GMM 
classifier for spoofing detection task. The lowest EERs 
are highlighted with orange color. 

EER (%) 

Known 

S1 S2 S3 S4 S5 Average 

0.0242 0.1046 0.0252 0.0167 0.0325 0.041 

Unknown 

S6 S7 S8 S9 S10 Average 

0.0932 0.0108 0.2362 0.0000 26.3926 5.347 

Average 2.694 

Table 3. Comparison of performance of LPRC and 
LPCC with other countermeasures when the spoofed 
model is trained on the S1 [7] spoofing technique data 
and tested on all five development test spoofing 
techniques (S1-S5) [7] data. The lowest EER is 
highlighted with orange color. 

EER (%) 
 All-dev  All-dev 

MFCC 6.24 WLPGDCC 4.7 

MFCC-CNPCC 4.01 LPCC 6.40 

PS-MFCC 5.51 LPRC 0.735 

MGDFCC 22.23  

4. Conclusions 

In this paper we used some existing (e.g., MGDCC, CNPCC) 
countermeasure and introduced two new ones, MFCC-CNPCC 
and LPRC, for the first ASVspoof 2015 challenge tasks. Our 
primary system performed very well on known attacks with an 
EER of 0.041% and but resulted in considerably higher EER 
on unknown attacks. The LPRC countermeasure showed 
excellent performance on both known and unknown spoofing 
attacks.    
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