
Notes on computation of first and second
order partial derivatives for optimization

Niko Brümmer

September 21, 2009

1 Definitions
A function f : Rn 7→ Rm, where y = f(x), or [y1, · · · , ym]′ = f([x1, · · · , xN]′),
has the following first and second order partial derivatives1:

Jacobian, an m-by-n matrix, J =
[
∂yi

∂xj

]
,

Hessians, m different n-by-n matrices, Hk =
[

∂2yk

∂xi∂xj

]
.

In general, the Jacobian and Hessian matrices are dependent on x, but we
omit this to avoid cluttering notation. We now define three functions in
terms of these matrices:

J : Rn 7→ Rm, where J(x̃) = Jx̃, (1)
G : Rm 7→ Rn, where G(ỹ) = J′ỹ, (2)

H : Rn × Rm 7→ Rn, where H(x̃, ỹ) =
m∑
k=1

ỹkHkx̃. (3)

Since x is suppressed in the notation, the outputs of these functions are still
dependent on x, but also on the new inputs x̃ and ỹ.

In places we do need to explicitly refer to the original function input. In
this case we use the notation |x+αx̃ to denote that the above-defined partial
derivatives of f are evaluated at x+αx̃, rather than x. We need this notation
to express H in terms of the directed derivative of G:

H(x̃, ỹ)|x =
∂ G(ỹ)|x+αx̃

∂α

∣∣∣∣
α=0

= lim
α→0

G(ỹ)|x+αx̃

α
(4)

1We tacitly assume we are working with ‘nice’ non-pathological functions for which
these derivatives exist and for which the Hessian matrices are symmetrical.

1

2 Derivatives for optimization of objective func-
tions

Optimization objective functions have m = 1 and n ≥ 1. If we set ỹ1 = 1,
then (2) gives the gradient,

[
∂y
∂xi

]
, and (3) gives the Hessian-vector prod-

uct, Hx̃, both of which are usually required by second-order optimization
algorithms.

3 Chain rules

3.1 Function composition

Complex objective functions can be constructed by using function compo-
sition of simpler functions. Here we give chain rules which show how to
compute the derivatives of compositions. Let g : Rn 7→ Rk and f : Rk 7→ Rm,
which can be composed as h(x) = f(g(x)). Now, the derivatives of the
composition are:

Jh(x̃) = Jf

(
Jg(x̃)

)
, (5)

Gh(ỹ) = Gg

(
Gf (ỹ)

)
, (6)

Hh(x̃, ỹ) = Hg

(
x̃, Gf (ỹ)

)
+Gg

(
Hf (Jg(x̃), ỹ)

)
(7)

To make this notation more familiar it may help to note that when f has a
scalar output, then Gf (1) =

[
∂f
∂gi

]
is the gradient of f , and Gh(1) =

[
∂f
∂xi

]
=

J′g

[
∂f
∂gi

]
is the gradient of the composition. In neural networks this is called

backpropagation of the gradient.

3.2 Implementation

For efficient implementation of the derivatives of large-scale problems, the
following principles can be used:

1. If memory allows, store intermediate results obtained during function
value or gradient computations, to be re-used for gradient or Hessian
computations.

2. Do not explicitly compute and store J and H, they may be very large.
We need only to be able to perform the mappings (1), (2) and (3), for
a relatively small number of the inputs x̃ and ỹ.

2

In a typical second-order optimization iteration, the order of computation
will be (i) evaluate the objective function value, (ii) evaluate the gradient,
(iii) evaluate Hx̃ for several different values of x̃. For a function composition
f(g(x)) the chain rules above imply the following order of computation:

1. For the function value compute (i) y = g(x), then (ii) f(y).

2. For the gradient compute (i) ỹ = Gf (·), then (ii) Gg(ỹ).

3. For each value of x̃, compute (i) y̆ = Jg(x̃) and h̃ = Hg(x̃, ỹ), then (ii)
h = Hf (y̆, ·), and finally (iii) h̃ +Gg(h).

If memory allows, all intermediate values in earlier steps that will be needed
in later steps should be stored to avoid re-computation.

For a linear function f(x) = Ax, the Jacobian is just A. But often a
linear mapping f(x) may be defined via some algorithm (for example an
FFT) rather than a dense matrix. In this case the algorithm for f(x) is also
the algorithm for J(x). The art is then to also implement the algorithm
efficiently which computes the transpose of that mapping. See section 5.2
below for the example of the diag() function.

If A is an explicitly specified large dense matrix, then depending on the
platform, the implementation G(ỹ) = (ỹ′A)′ may be more efficient than
G(ỹ) = A′ỹ, because in the worst case, transposing A could involve a non-
in-place copying of the large matrix.

As in the case of the Jacobian, it is often possible to find efficient al-
gorithms to analytically compute, or numerically approximate the Hessian
mapping (3). We devote section 4 to discuss this. Also see the example below
in section 5.1, where we derive an analytical algorithm for (3).

3.3 Functions with multiple inputs

Consider a function of two inputs defined as g : Rn × Rm 7→ Rk. We handle
this function in our framework by stacking the inputs into a single vector
of size m + n. Define s = [x

z] and s̃ = [x̃
z̃] and f(s) = g(x, z), then the

derivatives of f can be expressed in terms of derivatives of g:

Jf (s̃) = Jx(x̃) + Jz(z̃) (8)

Gf (ỹ) =

[
Gx(ỹ)
Gz(ỹ)

]
(9)

Here the right-hand sides denotes partial derivatives of g, w.r.t. x or z
respectively. To obtain Hf , it is best to apply (4) to Gf (ỹ).

3

4 Computing the Hessian-vector product
Note that it is never necessary to compute the full Hessian matrices, Hk,
which grow as the square of the number of input parameters. This can be
very large for large-scale optimizations.

The product Hkx̃ can often be computed analytically and efficiently—see
section 5 for examples. But it is also well suited to numerical approximation,
provided a function which computes the gradient is available. Then a finite-
difference approximation to (4) can be used. This can be implemented, with
some suitably small ε > 0, as

H(x̃, ỹ) ≈
G(ỹ)|x+εx̃ − G(ỹ)|x

ε
, (10)

or more accurately as

H(x̃, ỹ) ≈
G(ỹ)|x+εx̃ − G(ỹ)|x−εx̃

2ε
, or (11)

or if complex arithmetic is available, as

H(x̃, ỹ) ≈
imagG(ỹ)|x+iεx̃

ε
. (12)

The last method is called complex step differentiation. It has the advantages
that:

• It is easier to choose a suitable value for ε, because it is accurate for a
wider range of values than the real step methods.

• In particular, ε can be made very small, which can then give very
accurate approximation.

but, it has the following pitfalls and disadvantages:

• It uses complex arithmetic, which uses more memory. (It also uses
more CPU per function evaluation, but probably not more than two
real function evaluations, which the above symmetric real step method
also does.)

• It cannot be applied to calculations which already involve complex
arithmetic. In particular, you cannot differentiate twice with this
method. This is why we need an implementation of the gradient.

• MATLAB’s transpose is a problem, because the usual operator ′ does
a complex conjugate transpose. Code that will be differentiated with
the complex step method should instead transpose a matrix X as X.′,
where the sign of the imaginary part is not changed.

4

5 Matrix differentiation
For functions using matrix multiplications, inverses, determinants etc., ma-
trix differential calculus2 can provide solutions to computing the required
derivatives.

To understand the following, you need at least some previous expo-
sure to matrix differential calculus. We show how to compute the required
derivatives by way of a few examples. We use the notation of Magnus and
Neudecker, where d denotes differential and D denotes partial derivatives.

5.1 Example 1

Let f be a function which maps a matrix X to a matrix Y, thus:

Y = X′KX (13)

where K is a constant matrix of appropriate size. We define f in terms of
the vectorized representations of the matrices:

f : vec(X) 7→ vec(X′KX) (14)

Now we need to compute the above-defined mappings J , G and H:

5.1.1 Jacobian

J is the easiest, via straight-forward computation of differentials: To apply
the Jacobian mapping, J(x̃) do:

1. Reshape input to matrix: x̃ 7→ dX

2. Compute differentials: dY = dX′KX + X′KdX

3. Output: vec(dY)

5.1.2 Gradient

To compute the transpose Jacobian mapping, we need to consider how partial
derivatives backpropagate from some arbitrary scalar-valued outer function
g in the composition g(Y) = g(X′KX). Let the matrix of partial derivatives

2See Tom Minka’s introductory tutorial, ‘Old and new matrix algebra useful for
statistics’, available here http://research.microsoft.com/en-us/um/people/minka/
papers/matrix/minka-matrix.pdf. For a more complete treatment, see the textbook
by Magnus and Neudecker, Matrix Differential Calculus with Applications in Statistics
and Econometrics.

5

http://research.microsoft.com/en-us/um/people/minka/papers/matrix/minka-matrix.pdf
http://research.microsoft.com/en-us/um/people/minka/papers/matrix/minka-matrix.pdf

of g w.r.t. the elements of Y be denoted3 as DY = [∂g
∂yij

]. The chain rule
for differentials now gives4: dg(Y) = trace(dY′DY). The trace allows5 for
re-arrangement of matrix products, to find DX = [∂g

∂xij
]. Note that we re-use

the above expansion of dY in the form dY′ = dX′K′X + X′K′dX:

dg(Y) = trace(dY′DY)

= trace(dX′K′XDY) + trace(X′K′dXDY)

= trace(dX′K′XDY) + trace(DY′dX′KX)

= trace(dX′K′XDY) + trace(dX′KXDY′)

= trace(dX′(K′XDY + KXDY′))

= trace(dX′DX)

(15)

where the desired result is now:

DX = K′XDY + KXDY′ (16)

Finally, to implement the mapping G(ỹ), where ỹ = vec(DY), we do:

1. Reshape ỹ to matrix to recover DY.

2. Compute the partial derivatives, DX, using (16).

3. Output: vec(DX).

5.1.3 Hessian product

To compute H(x̃, ỹ), we re-use the above-derived expression for DX, which
already expresses the dependency on ỹ. If we let x̃ = vec(X̃), then H(x̃, ỹ) =
H vec(X̃), where H is the Hessian of the composition g(X′KX). In this case
we can find the Hessian product by exact evaluation of (4), as follows:

1. Reshape x̃ to recover X̃.

2. In (16), replace X→ X+αX̃, which makes DX a function of the scalar
α.

3. Differentiate, then set α = 0: ∂
∂α

DX
∣∣
α=0

= K′X̃DY + KX̃DY′.

4. Output: vec(∂
∂α

DX
∣∣
α=0

).

3Our definition of D is different from that in Magnus and Neudecker, who use D to
denote the transpose of the matrix of partial derivatives. We change the orientation to be
more convenient to our purposes here.

4Note: trace(dY′DY) =
∑

i,j dyij
∂g

∂yij
.

5You can transpose or rotate the argument of the trace, without changing its value.

6

5.2 Example 2

We now modify the function from the previous example to instead return
only the diagonal of the product matrix. We shall use the notation diag(X)
to denote the function which maps a square matrix X to its the diagonal,
represented as a column vector. This function is a linear transformation. The
transpose (not inverse) of this linear transformation we denote as Diag(x)
and it returns a square diagonal matrix, with x on the diagonal and zeros
elsewhere.

We now redefine f to be a function which maps a matrix X to a vector
y, thus:

y = diag(X′KX) (17)

where K is a constant matrix of appropriate size. We define f in terms of
the vectorized representation of the input matrix:

f : vec(X) 7→ diag(X′KX) (18)

Now we need to compute the above-defined mappings J , G and H:

5.2.1 Jacobian

To compute J(x̃) for the modified function imposes no extra difficulty. Since
diag() is linear it is also its own Jacobian transform, so that d diag(Y) =
diag(dY). This gives the recipe:

1. Reshape input to matrix: x̃ 7→ dX

2. Compute differentials: dy = diag(d(X′KX)) = diag(dX′KX+X′KdX)

3. Output: dy

5.2.2 Gradient

To implement G(ỹ), the quickest route6 is to use the fact that Diag() is the
transpose of diag(). Now the chain rule requires to first apply Diag() and
then proceed as before:

1. Ỹ = Diag(ỹ)

2. In (16), replace DY → Ỹ to get: DX = (K′ + K)XỸ.

3. Output: vec(DX)

6Alternatively, one can proceed again with the full recipe given in the previous example
and use the fact that y′ diag(M) = trace(Diag(y)M) and manipulate the trace as before.

7

5.2.3 Hessian product

To compute the Hessian, we differentiate the gradient in the same way as
before. This gives:

H(x̃, ỹ) = vec((K′ + K)X̃Ỹ). (19)

5.3 Example 3

Let
f : vec(X) 7→ vec(X−1) (20)

5.3.1 Jacobian

If Y = X−1, then
dY = −X−1dXX−1 (21)

For some scalar-valued function g(Y), let DY = [∂g
∂yij

]. Then

dg(Y) = trace(dY′DY)

= trace(−(X−1)′dX′(X−1)′DY)

= trace(−dX′(X−1)′DY(X−1)′)

(22)

8

	Definitions
	Derivatives for optimization of objective functions
	Chain rules
	Function composition
	Implementation
	Functions with multiple inputs

	Computing the Hessian-vector product
	Matrix differentiation
	Example 1
	Jacobian
	Gradient
	Hessian product

	Example 2
	Jacobian
	Gradient
	Hessian product

	Example 3
	Jacobian

