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Abstract

The detection of human and spoofed (synthetic/converted)
speech has started to receive more attention. In this study,
relative phase information extracted from a Fourier spectrum
is used to detect human and spoofed speech. Because origi-
nal/natural phase information is almost entirely lost in spoofed
speech using current synthesis/conversion techniques, a modi-
fied group delay based feature, the frequency derivative of the
phase spectrum, has been shown effective for detecting human
speech and spoofed speech. The modified group delay based
phase contains both the magnitude spectrum and phase informa-
tion. Therefore, the relative phase information, which contains
only phase information, is expected to achieve a better spoofing
detection performance. In this study, the relative phase informa-
tion is also combined with the Mel-Frequency Cepstral Coeffi-
cient (MFCC) and modified group delay. The proposed method
was evaluated using the “ASVspoof 2015: Automatic Speaker
Verification Spoofing and Countermeasures Challenge” dataset.
The results show that the proposed relative phase information
significantly outperforms the MFCC and modified group delay.
The equal error rate (EER) was reduced from 1.74% of MFCC,
0.83% of modified group delay to 0.013% of relative phase. By
combining the relative phase with MFCC and modified group
delay, the EER was reduced to 0.002%.
Index Terms: Spoofing detection, relative phase information,
group delay, GMM, countermeasures

1. Introduction
Recently, speaker verification technology has been used in
many applications using telephone, such as telephone banking
and credit cards [1, 2]. However, the conventional speaker veri-
fication system is weak for voice conversion and speech synthe-
sis techniques [3, 4]. In voice conversion, the speech of a source
speaker is converted to voice like a target speaker. For speech
synthesis, the voice of the target speaker is mimicked givenany
text. Related studies have indicated that the detection of spoofed
speech (synthetic/converted speech) from human speech is very
important to improve the robustness of speaker verificationsys-
tems [5, 6, 7, 8, 9, 10]. In this study, we focus on spoofing
detection, a task to determine whether a speech sample contains
human or spoofed speech.

To detect spoofed speech from human speech, many fea-
tures (e.g. magnitude spectrum, pitch, group delay and mod-
ulation features) have been considered [5, 9, 11]. In addition
to pitch information, spectral information was proposed tode-
tect synthetic speech [5]. In [11], cosine-normalized phase and
modified group delay function phase spectrum based features
were proposed to distinguish voice converted speech from hu-
man speech. In [9], modulation features were applied to detect

synthetic speech. These studies indicate that phase related fea-
tures outperform magnitude-based features because the original
phase information is lost in the spoofed speech.

The most commonly used phase related feature may be the
group delay based feature [13, 14]. Group delay is defined as
the negative derivative of the phase of the Fourier transform of
a signal. In fact, the group delay based phase contains both
the magnitude spectrum and phase spectrum [12, 13, 14]. This
means the component of magnitude spectrum in group delay
may degrade the performance of spoofing detection. In our pre-
vious study [15, 16, 17, 18], relative phase information directly
extracted from the Fourier transform of the speech wave has
been proposed. To reduce the phase variation by cutting posi-
tions, the phase of a certain base frequency is kept constant,
and the phases of other frequencies are estimated relative to
this. The experimental results showed that the relative phase
information was effective for speaker recognition for various
conditions. In this paper, the relative phase information is pro-
posed to detect human speech and spoofed speech. Because
the relative phase information does not contain any magnitude
spectrum and cannot normalize the phase variation by cutting
positions, it is expected to achieve a better performance than
other phase relative features such as the group delay based fea-
ture. Furthermore, the relative phase information is combined
with modified group delay for spoofing detection.

The remainder of this paper is organized as follows: The
system of spoofing detection is described in Section 2. Section
3 presents the modified group delay and the relative phase in-
formation extraction. The experimental setup and results are
reported in Section 4, and Section 5 presents our conclusions.

2. Overview of spoofing detection system
The flowchart of the spoofing detection system is shown in Fig.
1. In this study, a Gaussian mixture model (GMM) [21, 22] is
used as spoofed speech detector. The decision about whether
speech is natural human or spoofed is based on the log likeli-
hood ratio:

Λ(O) = log p(O|λhuman) − log p(O|λspoof ), (1)

whereO is the feature vector of input speech,λhuman and
λspoof are the GMMs for natural and spoofed speech, re-
spectively. Here, Mel-frequency Cepstral Coefficient (MFCC),
modified group delay and relative phase information described
in Section 3 are used.

In this study, the likelihood ratios of two or three features
are also linearly combined to produce a new scoreΛcomb(O)
given by

Λcomb(O) =
X

n

αnΛ(On), (2)
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Figure 1:Flowchart of spoofing detection system.

whereΛ(On) is the log likelihood ratio andαn denotes the
weighting coefficients corresponding to then-th feature set
n ∈ {1, 2, 3} is MFCCs, MGDCC or Relative phase, respec-
tively. The decision threshold and weighting coefficient were
determined using a development set.

3. Phase information extraction
3.1. Modified group delay

The spectrumX(ω) of a signal is obtained by DFT of an input
speech signal sequence x(n)

X(ω) = |X(ω)|ejθ(ω)
, (3)

where|X(ω)| andθ(ω) are the magnitude spectrum and phase
spectrum at frequencyω, respectively.

Group delay [23] is defined as the negative derivative of the
Fourier transform phase for frequency, that is,

τ (ω) = −
d(θ(ω))

dω
. (4)

The group delay function can also be calculated directly from
the speech signal using

τx(ω) =
XR(ω)YR(ω) + YI(ω)XI(ω)

|X(ω)|2
, (5)

where the subscriptsR and I denote the real and imaginary
parts of the Fourier transform.X(ω) andY (ω) are the Fourier
transforms ofx(n) andnx(n), respectively.

There are many studies reporting that modified group delay
is better than the original group delay [12, 13, 14, 23]. The
modified group delay function can be defined as

τm(ω) =
XR(ω)YR(ω) + YI(ω)XI(ω)

Sc(ω)
, (6)

whereSc(ω) is the cepstrally smoothed spectrum ofS(ω) and
S(ω) is the squared magnitude|X(ω)|2 of the signalx(n).

3.2. Relative phase information

The phase changes depending on the clipping position of the
input speech even at the same frequencyω. To overcome this
problem, the phase of a certain base frequencyω is kept con-
stant, and the phases of other frequencies are estimated relative

Table 1:Phase variation related to the frequencyω and sample
points∆ of shifted position.

Period Frequency Phase variation

T ω = 2π
T

∆
T

2π

to this. For example, by setting the base frequencyω to 0, we
obtain

X
′(ω) = |X(ω)| × e

jθ(ω) × e
j(−θ(ω))

, (7)

whereas for the other frequencyω′ = 2πf ′, the spectrum be-
comes [18]

X
′(ω′)

= |X ′(ω′)| × e
jθ(ω′) × e

j ω
′

ω
(−θ(ω))

. (8)

In this way, the phase can be normalized, and the normalized
phase information becomes

θ̃(ω′) = θ(ω′) +
ω′

ω
(−θ(ω)). (9)

In the experiments described in this paper, the base fre-
quencyω is set to2π× 1000 Hz. In the previous study, we
used phase information only in a sub-band frequency range to
reduce the number of feature parameters. However, a problem
arose with this method when comparing two phase values. For
example, for two valuesπ − θ̃1 andθ̃2 = −π + θ̃1, the differ-
ence is2π−2θ̃1. If θ̃1 ≈ 0, then the difference is≈ 2π, despite
the two phases being very similar to each other. Therefore, we
modified the phase into coordinates on a unit circle [18], that is,

θ̃ → {cos θ̃, sin θ̃}. (10)

We can reduce the phase variation using the relative phase
extraction method that normalizes the phase variation by cutting
positions. However, the normalization of phase variation is still
inadequate. For example, for a 1000-Hz periodic wave (16 sam-
ples per cycle for a 16-kHz sampling frequency), if one sample
point shifts in the cutting position, the phase shifts only by 2π

16
,

while for a 500-Hz periodic wave, the phase shifts only by2π
32

with this single sample cutting shift. However , if the 17 sample
points shift, the phases of the 1000-Hz and 500-Hz waves will
shift by 17·2π

16
(mod2π) = 2π

16
and 34π

32
, respectively. Therefore,

the values of the relative phase information for different cutting
positions are very different from those of the original cutting
position. The phase variation is summarized in Table 1. We
have partly addressed such variations using a statistical GMM
[18].

If we could split the utterance by each pitch cycle, changes
in the phase information would be further obviated. Thus, we
proposed a new extraction method that synchronizes the split-
ting section with a pseudo-pitch cycle [19, 20]. With respect
to how to unite the cutting sections in the time domain, the pro-
posed method looks for the maximum amplitude at the center of
the conventional target splitting section of an utterance wave-
form, and the peak of the utterance waveform in this range is
adopted as the center of the next window. This means that the
center of the frame has maximum amplitude in all frames. Fig.
2 outlines how to synchronize the splitting section. We expect
an improvement over our proposed conventional phase informa-
tion [16, 17, 18].



Utterance 

waveform

New Center of 

cutting section

Range which 

searches peak

Center of       

cutting section

Cutting section

Adjustment of  

cutting section

Hamming window

Original 

cutting section

Proposed 

cutting section

Figure 2:How to synchronize the splitting section.

4. Experiments
4.1. Datasets

We evaluate our proposed method for spoofing detection using
the standard “ASVSpoof 2015 Challenge” dataset1 of both gen-
uine (human) and spoofed speech. Genuine speech was col-
lected from 106 speakers (45 male, 61 female) with no signifi-
cant channel or background noise effects. Spoofed speech was
generated from the genuine data using a number of different
spoofing algorithms. The full dataset was partitioned into three
subsets, the first for training, the second for development and
the third for evaluation. The details of each subset are summa-
rized in Table 2. There was no speaker overlap across the three
subsets regarding target speakers used in voice conversionor
Text To Speech (TTS) adaptation.

For the training dataset, each spoofed utterance was gener-
ated according to one of three voice conversion and two speech
synthesis algorithms. For the development dataset, spoofed
speech was generated according to one of the same five spoofing
algorithms used to generate the training dataset. For the evalu-
ation dataset, spoofed data was generated according to diverse
spoofing algorithms. They included the same five algorithms
used to generate the development dataset in addition to others,
designated as “unknown” spoofing algorithms.

4.2. Experimental setup

The input speech was sampled at 16 kHz. For MFCCs, a total
of 38 dimensions (12 MFCCs, 12∆MFCCs, 12∆∆MFCCs,
∆power and∆∆power) were calculated every 10 ms with a
window of 25 ms. Thirty-eight static modified group delay cep-
stral coefficients (MGDCC) were calculated from the modified
group delay function phase spectrum [9]. Relative phase in-

1http://www.spoofingchallenge.org/

Table 2:Number of non-overlapping target speakers and utter-
ances in the training, development and evaluation datasets.

#Speakers #Utterances
Subset Male Female Genuine Spoofed

Training 10 15 3750 12625
Development 15 20 3497 49875
Evaluation 20 26 9404 ≈ 200000

Table 3:Analysis conditions for MFCC, MGDCC and relative
phase information.

MFCC MGDCC Relative phase
Frame length 25 ms 25 ms 12.5 ms
Frame shift 10 ms 10 ms 5 ms
FFT size 512 samples 512 samples 256 samples

(400 data plus (400 data plus (200 data plus
112 zeros) 112 zeros) 56 zeros)

Dimensions 38

formation was calculated every 5 ms with a window of 12.5
ms. A spectrum with 128 components consisting of magnitude
and phase was calculated by DFT for every 256 samples. Then
39 static relative phase features (that is, 19cos θ̃ and 19sin θ̃)
were extracted. For the pseudo-pitch-synchronized phase in-
formation extraction method, the range for searching the peak
amplitude point is 2.5 ms (half of the frame shift). The details
of analysis conditions for MFCC, MGDCC and relative phase
information are summarized in Table 3.

GMMs of human and spoofed speech were trained using a
training dataset, and the mixed number of GMMs was 256, as
determined by the development dataset.

4.3. Experimental results

4.3.1. Results of development dataset

The Equal Error Rates (EERs) of spoofing detection perfor-
mance for the development dataset are shown in Table 4. The
modified group delay cepstral coefficient (MGDCC) outper-
forms MFCC. The results show the same trend as [11]. Be-
cause the MGDCC also contains magnitude spectrum informa-
tion, the spoofing detection performance is not sufficient. Rel-
ative phase information significantly outperforms the MGDCC
because it normalizes the phase variation by cutting positions.
The combination of relative phase with MFCC or MGDCC is
also significantly better than the combination of MGDCC with

Table 4:EERs (%) of spoofing detection performance of various
features on development dataset.

Features Equal error rate (%)
MFCC 1.74

MGDCC 0.83
Relative phase 0.013

MFCC+MGDCC 0.256
MFCC+relative phase 0.004

MGDCC+relative phase 0.004
MFCC+MGDCC+relative phase 0.002



Table 5:EERs (%) of spoofing detection performance of various features on evaluation dataset.

Features Know Unknown All
attacks attacks attacks

s1 s2 s3 s4 s5 Ave. s6 s7 s8 s9 s10 Ave. Ave.
MGDCC — — — — — 1.155 — — — — — 6.761 3.958

Relative phase 0.000 0.025 0.000 0.000 0.025 0.010 0.285 0.005 1.179 0.000 37.728 7.840 3.925

MGDCC+ 0.000 0.009 0.000 0.000 0.015 0.005 0.081 0.005 0.080 0.000 37.068 7.447 3.726
relative phase

MFCC. By combining the log likelihood ratios of three features
(two phase related features and one magnitude related feature),
a best performance is achieved, that is, the EER is from 0.256%
of the combination of MGDCC with MFCC to 0.002% of the
proposed method.

4.3.2. Results of evaluation dataset

The Equal Error Rates (EERs) of spoofing detection perfor-
mance on evaluation dataset are shown in Table 5. Because we
cannot submit MFCC based log likelihood ratio to “ASVSpoof
2015 Challenge” in time and we do not have a key file for
the evaluation set, only the phase related results are available
in this paper. For “known attacks”, the trend of the evalu-
ation dataset is the same as that of the development dataset.
Our result of the combination of MGDCC and relative phase
for “known attacks” submitted to “ASVSpoof 2015 Challenge”
achieved 2nd place ranking among 16 teams even when using a
very simple GMM based detector without any score normal-
ization. For “unknown attacks”, both phase related features
achieved good performance except for “s10” spoofed speech.
The reason may be that the phase related feature is weak for an
unknown “s10” voice conversion or speech synthesis technique
considering phase information. However, we do not have access
to the detailed analysis as the key file for the evaluation dataset
was unavailable. In the development dataset, the combination
of MFCC with two phase related features achieved the best per-
formance. It is considered that the performance of “known at-
tacks” and “unknown attacks” may be improved when we com-
bine three features. Furthermore, state-of-the-art speaker veri-
fication, such as i-vector based feature representation andprob-
abilistic linear discriminant analysis (PLDA) based modeling
[24], is also expected to improve the spoofing detection perfor-
mance.

5. Conclusions

In this paper, the relative phase information was proposed for
spoofing detection, and was also combined with the MFCC and
modified group delay cepstral coefficient. The proposed method
was evaluated with the “ASVspoof 2015 Challenge” dataset.
The results indicated that the proposed relative phase informa-
tion significantly outperformed the MFCC and MGDCC. For
the development dataset, the EER was reduced from 1.74% of
MFCC, 0.83% of MGDCC to 0.013% of the relative phase.
By combining the relative phase with MFCC and MGDCC, the
EER was reduced to 0.002%.

For the evaluation dataset, the combination of MGDCC and
relative phase for “known attacks” submitted to “ASVSpoof
2015 Challenge” achieved 2nd place among 16 teams, even
although we only used a very simple GMM based detector
without any score normalization. For “unknown attacks”, both

phase related features achieved good performance except for
“s10” spoofed speech. The reason may be that the phase related
feature is weak for an unknown voice conversion or speech syn-
thesis technique considering phase information.

In our future work, we will try to combine relative phase in-
formation with MGDCC and MFCC for an evaluation dataset.
Furthermore, we will try to implement the state-of-the-arti-
vector based feature representation and PLDA based modeling
for spoofing detection [24].
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