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Abstract
Protection from spoofing attacks is an essential component of
speaker verification systems. This paper proposes a novel ap-
proach to detect such attacks by utilizing supervectors derived
from spectral magnitude and phase information. Three counter-
measures are chosen to represent these important information.
To combine different countermeasures, score fusion and an anti-
spoofing supervector (ASSV) are used. Experiments conducted
on ASVspoof 2015 show that the combination of magnitude and
phase information obtains relative 90% improvement in terms
of the equal error rate (EER) compared to the best subsystem
in the development set. The two systems can also be fused to
further improve the performance. In addition to accuracy im-
provements, the new supervector framework is extensible and
allows for a more flexible interface to the back-end classifier
design.
Index Terms: speaker verification, anti-spoofing supervector,
spectral magnitude and phase information, ASVspoof 2015

1. Introduction
Text-independent automatic speaker verification (ASV) plays
an important role in biometric authentication. By virtue of new
modeling methods, such as Joint Factor Analysis (JFA) and i-
vector representations, ASV systems have become less suscep-
tible to noise or channel effects. However, even state-of-the-art
ASV systems are still quite vulnerable to deliberate spoofing
attacks. Classical spoofing methods, such as impersonation,
replay, speech synthesis, voice conversion (including artificial
signal generation), can significantly increase the false accep-
tance rate of ASV systems [1].

To address this situation, recently several countermeasures
have been proposed to make ASV systems more robust from
spoofing [2]. Most current anti-spoofing algorithms are built
on assumptions related to specific spoofing approaches. For in-
stance, impersonators are considered to exhibit larger acoustic
parameter variation than original speakers [3] and different pre-
sentation of channel noise and reverberation can be a mecha-
nism to recognize recordings [4]. Speech synthesis and voice
conversion are two of the most easily accessible and effective
spoofing approaches, which have received the most attention
[5]. Dozens of countermeasures have been proposed, including
detecting phase information [6], modeling the pattern of long-
term features like F0 statistics [7], and observing the texture of
the spectrogram [8, 9].

These anti-spoofing algorithms have been shown to work
well under individual experimental configurations. However,
testing has been done across a variety of databases, which
makes performance comparison very difficult, if not meaning-
less. Moreover, most proposed countermeasures just focus on
one specific type of attack. This is a significant limitation, be-
cause in practical applications a wide variety of attacks would
always be expected. One way to address this is through score
fusion, which is able to combine the discriminative capabilities
of different features. For example, short-term and long-term
features have been fused together to improve performance [10].

In this paper, three countermeasures based on spectral mag-
nitude and phase information are extracted as supervectors and
can be classified by support vector machine (SVM). In addition
to score fusion, a new anti-spoofing supervector (ASSV) ap-
proach is presented to combine these countermeasures to detect
diverse spoofing, including voice conversion and speech syn-
thesis. We evaluate our method using the ASVspoof 2015 chal-
lenge [11] so that the results are comparable across participants.

The remainder of this paper is organized as follows. The
three types of countermeasures we use are briefly introduced in
Sections 2. Section 3 presents the details of supervector extrac-
tion and our ASSV structure. Experimental work is described
in Section 4. Finally, Section 5 concludes the paper.

2. Spoofing countermeasures based on
magnitude and phase information

Spoofing is a mechanism to trick an ASV system by imitating a
target speaker. Although the imitation is not acoustically exact,
spoofing can target the features and models used for speaker
identification. Since such synthesized, converted or artificially
generated utterances unavoidably change important parameters,
making the speech acoustically “unnatural”, it should be possi-
ble to explicitly discriminate such spoofed speech. Both mag-
nitude and phase information in the frequency domain can be
effectively utilized together to identify such differences. In this
work we use three features representative of these important in-
formation. They are local binary patterns, modified group delay
feature and cosine normalized phase feature.

2.1. Local binary patterns

The spectro-temporal structure is an important property of an
utterance. We hypothesize that many spoofing methods would
alter the spectro-temporal structure, often referred to as ”tex-



ture” [8]. To detect this disturbance, a well established approach
called Local Binary Patterns (LBP) is used.

LBP was first proposed in texture recognition to represent
local properties of a grey scale image. When dealing with a
pixel gc in an image, the LBP operator characterizes P equally
spaced pixels (g0, . . . , gP−1) on a circle of radius R around
gc. The central pixel compares its gray-scale value with other
neighbors and the sign of each comparison comprises the cor-
responding LBP. The LBP operator can be expressed as:

LBPP,R =

P−1X
p=0

sign(gp − gc) · 2p (1)

where sign(x) denotes the sign function which equals 1 when
x >= 0 and 0 otherwise. It is straightforward to see there are
2p LBP indices with each pixel mapped to one unique index.
Indices that can be equivalently represented by a circular bit-
wise right shift are grouped together to remove the effect of
rotation. Examples for (P = 8, R = 1.0) and (P = 16, R =
2.0) are shown as Figure 1.

(a) (P = 8, R = 1.0),
LBP = (00011111)b

(b) (P = 16, R = 2.0),
LBP = (0000000000011111)b

Figure 1: Local neighbors of the central pixels, and the cor-
responding binary LBP indices. Blocks with gray-scale values
larger than the central pixels are marked with a deeper color.

In [12], the authors discussed that the fundamental proper-
ties of image texture concentrate on certain patterns. These spe-
cial patterns are defined as “uniform” LBPs, which have a com-
mon structure that only contains bit-wise transitions not larger
than 2. Other nonuniform patterns are treated as a miscella-
neous group. After the original gray scale image is converted to
LBP indices, the texture feature is extracted as the histogram of
the uniform LBP over the whole sample.

We apply this concept to speech signal processing by us-
ing the spectrogram as acoustic representation, and treat it as
a 2-D “image” so that the LBP operator can also be applied to
estimate the features texture. Hence, the texture of the spec-
tral magnitude becomes a representative feature to discriminate
spoofed speech. Note that in contrast to [8], we use the less-
processed FBank feature in this paper, which empirically gives
higher accuracy than cepstral coefficients such as LPCC.

2.2. Modified group delay feature

It has been demonstrated that the phase spectrum is useful for
human auditory perception [13]. Most current spoofing algo-
rithms do not retain the natural phase information, which makes
them more vulnerable to detection in the phase domain as op-
posed to magnitude spectra.
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(a) Conventional power spectro-
gram
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(b) Modified group delay spec-
trogram

Figure 2: Comparison between power and modified group delay
spectrograms over a two second interval of a file from ASVspoof
2015. The modified group delay spectrogram shows the same
formant information as the power spectrogram, but also pro-
vides additional structure.

Modified group delay features (MGDF) have been used
in phoneme recognition for a long time [14]. Derived from
the modified group delay function, MGDF provides meaning-
ful phase information. Results have shown that MGDF is well
suited to defend voice conversion attacks in contrast to conven-
tional cepstral features [10].

Given a speech signal x(n), the modified group delay func-
tion is expressed as:

τp(ω) =
XR(ω)YR(ω) +XI(ω)YI(ω)

|S(ω)|2 (2)

τα,γ(ω) =
τp(ω)

|τp(ω)| ·
˛̨̨̨
XR(ω)YR(ω) +XI(ω)YI(ω)

|S(ω)|2γ

˛̨̨̨α
(3)

where X(ω) and Y (ω) are the short-time Fourier transform
(STFT) of x(n) and nx(n) respectively, and the subscripts R
and I denote the real and imaginary parts of a complex num-
ber. |S(ω)|2 is the smoothed version of |X(ω)|2, which can
be obtained by simple cepstral smoothing or median filtering.
Two parameters α and γ are introduced to further suppress the
spiky nature of group delay spectrum. The difference between
the power spectrum and the modified group delay spectrum is
shown in Figure 2.

The discrete cosine transform (DCT) is applied to decor-
relate the coefficients and obtain the final MGDF. The zero-th
coefficient c0 is ignored per [14].

2.3. Cosine normalized phase feature

Unlike MGDF, cosine normalized phase features (CNPF) use a
more direct approach to extract phase information [15]. After
the STFT is applied to a speech frame, the short-time phase
spectrum ψ(ω) is first unwrapped to eliminate discontinuity.
Cosine normalization is necessary to constrain the dynamic
range to [−1, 1]. Then, a CNPF is extracted using a DCT ap-
plied to the cosine normalized phase spectrum.

3. Anti-spoofing supervector extraction
Motivated by the success of supervectors in speaker recognition
[16], we use a supervector-based structure in our anti-spoofing
system. Each utterance is converted to a single supervector, al-
lowing flexibility for different classifiers.



To make the LBP features described in Section 2 more ap-
propriate for spectrogram spoofing detection, we note some dif-
ferences between traditional LBPs and those applied to spectro-
grams:

• Unlike images, spectral texture does not need rotation
invariance, since rotation does not occur in speech-based
spectrograms.

• The rows of feature texture are physically significant. If
we use FBank features, each row denotes the spectral
character of a certain frequency range. Computing the
histogram over the whole image would lose this useful
information.

Taking these two points into account, we use unique LBPs
without rotation invariance. In addition, the histogram over
each coefficient is derived separately as shown in Figure 3,
rather than being combined. Each histogram is normalized to
limit the dynamic range and concatenated together to form the
normalized unique LBP (NULBP) supervector SVNULBP.

In contrast to the NULBP feature, the MGDF and CNPF are
extracted following a frame-by-frame fashion as conventional
acoustic features. To extract supervectors for this kind of fea-
ture, a Gaussian mixture model (GMM) - universal background
model (UBM) is first trained across all training speech. For each
utterance, a GMM is adapted from the UBM using maximum a
posteriori (MAP) adaptation:

g(x) =

NX
i=1

λiN (x; mi,Σi) (4)

where N denotes the mixture number, λi are the weights of
the mixtures, N () indicates a Gaussian distribution, and mi

and Σi are the mean and covariance of the i-th Gaussian. The
means of the GMM are scaled [16]:

m̂i =
√
λiΣ

−1/2
i mi (5)

and stacked to form the MGDF/CNPF supervector.

SVMGDF/CNPF =
h
m̂T

1 , m̂
T
2 , . . . , m̂

T
N

iT
(6)

Although these three countermeasures are designed to de-
tect a variety of spoofing attacks, they are dissimilar and there
is not a simple way to merge them directly. If the parameters
are carefully selected, score fusion would improve the perfor-
mance; however, this approach sometimes requires more clas-
sifiers than available. In this paper, we also concatenate these
supervectors to yield what we term an anti-spoofing supervector
(ASSV). The flowchart of ASSV extraction is demonstrated in
Figure 3. Our ASSV is described as

ASSV =
h
SVTNULBP, SVTMGDF, SVTCNPF

iT
(7)

This approach is extensible, so that an even larger ASSV
can be created, if additional anti-spoofing features are available.

4. Experimental work
4.1. ASVspoof 2015 challenge

The ASVspoof 2015 challenge was designed to evaluate the
performance of state-of-the-art spoofing countermeasures. The
database contains both genuine and spoofed speech. In the
training and development set, three voice conversion and two
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Figure 3: The flowchart of supervector extraction and ASSV
construction.

speech synthesis algorithms are presented. To avoid the use of
prior knowledge, five more algorithms were added to the eval-
uation set which was unseen during the development period.
Generalized countermeasures would be preferred. The details
of ASVspoof 2015 are described in [11].

4.2. Experiment setup

The NULBP is derived from 120-dimension FBank features: 40
static coefficients plus their delta and delta-delta coefficients.
P and R are chosen to be 8 and 1.0, respectively. The group
with bit-wise transitions larger than 2 is discarded, leaving 58
indices. Histograms for all coefficients except the first and last
are computed, giving a total NULBP dimension of 58 ∗ (120−
2) = 6844.

Both MGDF and CNPF use 12-dimension static features.
We fix γ = 1.2 and α = 0.4 in MGDF as described in [15].
Cepstral normalization is used on MGDF but not on CNPF.
Each GMM consists of 512 mixture components. The UBMs
are trained from all utterances in the training set. GMMs for
each utterance are adapted using only the UBM means [16].
The means are stacked to form 512 ∗ 12 = 6144 length super-
vectors.

Each type of supervector is classified by a two-class SVM
with linear kernel, and is considered as a separate sub-system.
The score fusion system is optimized in the development set us-
ing grid search. Our ASSV concatenates the above three super-
vectors thus the dimension would be 6844+6144∗2 = 19132.
A single SVM is able to discriminate the class of each ASSV.

In comparison with our supervector method, the original
GMM log-likelihood scoring [10, 15] is also implemented. In
this approach, two GMMs are trained separately on genuine and
spoofed speech. During the test phase, each utterance scores
against these two GMMs to compute the likelihood ratio.



In our experiments, we strictly follow the common training
condition of the ASVspoof 2015 challenge. Performance is re-
ported for the development and evaluation sets. The results for
the evaluation set were returned by the organizer of ASVspoof
2015. The equal error rate (EER) is used as the official primary
metric for ASVspoof 2015.

4.3. Results

We first compare the performance of sub-systems using separate
countermeasures individually. Both GMM log-likelihood scor-
ing and supervector systems are applied to MGDF and CNPF.
The results are shown in Table 1.

Table 1: The performance of sub-systems.

Sub-system EER(%)
NULBP+SVM 0.858
MGDF+SVM 2.602
MGDF+GMM 3.713
CNPF+SVM 4.403
CNPF+GMM 4.487

Among the three countermeasures, NULBP achieves bet-
ter performance than MGDF and CNPF. This suggests that
the spectrogram texture effectively indicates spoofed speech.
Meanwhile phase information, i. e. MGDF and CNPF, is also
useful to filter genuine speech. On the other hand, as is also typ-
ically the case for speaker verification, a supervector with lin-
ear kernel SVM consistently outperforms GMM log-likelihood
scoring. We will only use the supervector structure in the re-
maining experimental comparisons.

In order to combine the ability of the three countermea-
sures, both score fusion and the proposed ASSV approach are
evaluated. We also combine the two fusion systems to further
boost performance. The results in the development and evalua-
tion sets are shown in Table 2.

Table 2: The performance of combined systems.

Combined System EER(%)
dev eval known eval unknown eval avg

Score fusion
(Grid Search) 0.058 0.104 6.775 3.439

ASSV 0.117 0.159 6.227 3.193
Score fusion+ASSV 0.025 0.059 6.114 3.086

From Table 2, we find that although the MGDF and CNPF
systems do not perform as well as NULBP, their inclusions in
the score fusion and ASSV systems reduce the EER from the
best subsystem’s 0.858% to 0.058% and 0.117%, leading to
93% and 86% relative improvements in the development set.
This phenomenon shows the importance of the complementary
information contained in spectral magnitude and phase.

For known attacks in the development and evaluation sets,
score fusion achieves better results than the proposed ASSV ap-
proach. Our hypothesis for this is that ASSV simply concate-
nates all supervectors together without any weighting technolo-
gies, even though the discriminative abilities of different super-
vectors are unbalanced. The final system with both the fusion
and ASSV combined together gives additional performance im-
provement.

However, when it comes to unknown attacks, the two sys-
tems both perform considerably worse, and achieve basically

the same EERs. Table 3 illustrates the performance of differ-
ent attacks in the evaluation set. S1–S5 appear in the train-
ing set while S6–S10 stand for unknown attacks [11]. The
results come from our original primary submission before the
ASVspoof 2015 deadline.

Table 3: Attack-dependent EER results in the evaluation set.

Known S1 S2 S3 S4 S5
EER(%) 0.173 0.610 0.319 0.289 0.399

Unknown S6 S7 S8 S9 S10
EER(%) 0.906 0.242 0.417 0.246 28.581

It seems that S6-S9 are relatively easy to detect be-
cause they are voice conversion algorithms using the same
STRAIGHT vocoder with S1-S4 [17]. The main error comes
from S10 which dwarfs all others by 2 orders of magnitude.
S10 denotes a text-to-speech technology that does not use a
vocoder. The fact that no vocoder involved makes it sound more
natural than other spoofed speech. The magnitude texture and
phase information of such speech are unfamiliar to our classi-
fiers as well, making it difficult to recognize these utterances
in the evaluation set. New approaches need to be developed to
overcome this problem.

5. Conclusions
This paper presents a novel anti-spoofing system that combines
several unique features based on both spectral magnitude and
phase information. The supervector structure is effective at de-
tecting attacks, and outperforms the conventional GMM log-
likelihood scoring method. Experimental results show that,
compared with the subsystems, score fusion and ASSV greatly
reduce the EER, by 93% and 86% in the development set, re-
spectively. For known attacks, the fusion of these two systems
lowers the EER further, while more countermeasures are needed
to detect advanced unknown spoofing attacks. Overall the com-
bination of spectral magnitude and phase features produces a
significant improvement in spoofing detection, and the proposed
ASSV framework is extensible and has the potential for a sim-
ple but flexible back-end design.

Future work includes incorporating a weighting algorithm
to emphasize specific dimensions of ASSV in proportion to
their discriminative ability, and enhancing ASSV with other
powerful supervectors.
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