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Abstract

Speaker verification systems have achieved great performance

in recent times. However, we usually measure performance

on a ideal scenarios with naive impostors that do not modify

their voices to impersonate the target speakers. The fact of

impersonating a legitimate user is known as spoofing attack.

Recent works show the vulnerability of current speaker veri-

fication technology to several types of attacks. Most of these

works use non-public databases and different performance mea-

sures, which makes difficult to compare approaches. The spoof-

ing challenge (ASVspoof 2015) tries to overcome this problem

by proposing a common evaluation framework. This paper de-

scribes our submission to the challenge. We proposed to use

spectral log-filter-bank and relative phase shift features as input

to classifiers based on deep neural networks (DNN). The first of

our classifiers used DNN posteriors to decide if the trial is spoof

or non-spoof. The second used a bottleneck feature from the

DNN as input to a one-class SVM. The one-class SVM models

the distribution of legitimate speech, not needing spoofing data

for training. We fused the score of the different classifiers to

produce our final submission. Our system attained very com-

petitive results with EER<0.05% in 9 out of 10 spoofing types.

1. Introduction

Speaker verification systems have achieved great performance

in recent times, due to approaches like joint factor analysis and

i-vectors. However, we usually measure performance in an ideal

scenario with naive impostors that do not modify their voices to

improve their possibilities of impersonating the target speakers.

The fact of impersonating a legitimate user is known as spoofing

attack. With the improvement of the technology, the interest for

including it in commercial products has grown. However, re-

cent works show the vulnerability of current speaker verification

technology to several types of attacks: replay attack, imitation,

voice conversion and synthesis [1, 2, 3, 4].

There are some works that propose countermeasures for the

different types of attacks. An extensive summary can be found

in [5]. Most works assume the existence of a unique spoof, the

one that is the object of its study. That makes the countermea-

sures to be very specific and they may not generalize well for

unknown attacks. For example, countermeasures for voice con-

version [3] may not detect speech synthesis. Also, works about

speech synthesis [4] usually focus only on one or two types of

TTS among all the possibilities available in the market. This is

mainly due to the fact that most research groups do not have the
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means to build a diverse database. The lack of public databases

and protocols also complicates comparison of approaches and

collaboration between institutions. To overcome these prob-

lems, the recently introduced SAS dataset [6] and the spoofing

challenge (ASV Spoof 2015) [7] based on it propose a common

evaluation framework. This challenge focused on detecting 10

types of voice conversion and synthesis attacks.

This paper describes our submission to the challenge.

Our systems used spectral log-filter-bank and relative phase

shift features (RPS) [8], described in Section 2. The results

in [9] indicate that RPS provides robust spoof detection across

vocoders. We proposed two classifiers based on deep neural

networks (DNN), described in Section 3. The fist one, uses the

DNN posteriors as output. The second one is a novel classi-

fier using a one-class SVM to model the distribution of genuine

speech. The SVM works on bottleneck features from a DNN

trained to discriminate spoofed from genuine speech. In Sec-

tion 4, we include a short description of the challenge protocol

and detailed discussion of our results on the development and

evaluation data. Finally, Section 5 presents our conclusions.

2. Features

2.1. Magnitude Spectrum

Our first features were based on the magnitude value of the

spectrum. The signal was divided into frames of 25 msecs. and

15 msecs. of overlap. We applied preemphasis and a hamming

window before computing the fast Fourier transform (FFT) ab-

solute value. Then, we applied a 40 filters linear or Mel fil-

ter bank and computed the logarithm of the output. When us-

ing a GMM classifier we applied the DCT–obtaining MFCC or

LFCC– and appended deltas and double deltas, since this rep-

resentation is better for GMM than the raw filter bank output.

Silence frames were removed with a VAD based on the long-

term spectral divergence [10].

2.2. Relative Phase Shift

Relative phase shift (RPS) features had been used before to de-

tect synthetic speech [4, 9]. RPS is a representation of the har-

monic phase. To compute RPS, first, we do a Fourier analysis

of each frame x(t):

x(t) =
K∑

k=1

Ak cos(φk(t)) , φk(t) = 2πf0kt+ θk , (1)

where f0 is the fundamental frequency in that frame, Ak are

the amplitudes, φk(t) are the instantaneous phases, and θk is

the initial phase shift of the kth component. K is the number



of harmonics that fit into the interval [0, fs/2] Hz, being fs the

sampling frequency. The RPS is the phase shift between every

harmonic and the first harmonic at the point t0 of the funda-

mental period where φ1(t0) = 0. However, we can compute

the RPS at any point t as:

ψk = φk(t0) = φk(t)− kφ1(t) = θk − kθ1 . (2)

Then, RPS are wrapped to values in the [−π, π] interval. The

RPS reveals a structured pattern of the phase information that

we can not see looking at the instantaneous phases [8, 11, 9].

The RPS only makes sense on voiced frames, so unvoiced

frames were removed.

The RPS values are not suitable for statistical modeling.

First, discontinuities appear due to the wrapping of the param-

eters, so we unwrapped the phase to avoid discontinuities in

the RPS envelope . Second, the unwrapping can create very

different envelopes even for very similar signals. We differ-

entiated the RPS in the frequency axis (not time) to normalize

the envelopes. Another problem is that, depending of the pitch

frequency, each frame has different number of bands. We inter-

polated the differentiated RPS to obtain a value for each point

of the FFT. Finally, we reduced dimensionality by applying a

40 filters filter bank. We tried linear and Mel filter banks, the

linear one attained better results. As for the magnitude spec-

trum, when using GMM classifiers, we decorrelated the filter

bank output with a DCT and appended first and second deriva-

tives. We computed the RPS with the help of the COVAREP

toolkit [12].

3. Classifiers

3.1. Gaussian mixture models

Our baseline classifier was similar to the one used in [9]. We

trained a GMM on genuine speech (Mhuman) and another on

spoofed speech (Mspoof ) by EM iterations. Then, in the evalu-

ation phase, we computed the log-likelihood ratio (LLR) of the

test segment feature frames D given both hypothesis:

LLR = logP (D|Mhuman)− logP (D|Mspoof) . (3)

3.2. Deep neural networks

We trained a deep neural network (DNN) for each type of fea-

ture (Lin-filtered Spectrum and RPS). The input layer consisted

of a sliding window with the current frame in the center and

a context of several previous and posterior frames. The output

layer was a softmax of dimension 5, one output for the human

hypothesis, and one output for each of the four types of spoof

in the training set–Actually there were 5 types of attack but,

as we point out in Section 4, we considered spoofs 3 and 4 as

one given that they employed the same synthesizer. The net-

works were trained using a cross-entropy objective. For weight

initialization, we applied layer-wise discriminative pre-training,

described in detail in [13].

We tuned the network hyperparameters (number, type and

size of hidden layers, learning rates, etc) by Bayesian optimiza-

tion with the Spearmint toolkit [14]. We compared Sigmoid ver-

sus ReLu activation functions, ReLus performed the best. For

Lin-filtered spectrum, we used two hidden layers of dimension

1111; and, for RPS, two hidden layers of dimension 2048.

The output score of the system was obtained by transform-

ing the posterior P (human|D) given by the DNN into a log-

likelihood ratio:

LLR = logP (human|D)− log (1− P (human|D)) . (4)

Finally, we fused the scores of both networks (Spectrum

and RPS) by linear logistic regression with Bosaris toolkit [15].

The DNNs were trained on the training data and the fusion on

the development data. This was our primary system.

3.3. One-class SVM

We thought that DNNs could over-fit for the training spoofs. To

create a spoof-independent system, we decided to try a classifier

that can be trained on non-spoof data only. That is the case of

one-class SVMs [16]. One-class SVM are usually used to find

abnormal data. This SVM basically separates all the data points

from the origin in the high dimensional space defined by the

kernel function. In this manner, we obtain a binary function that

describes the probability density function where the normal data

lives. This function returns +1 in the small region corresponding

to the training data and -1 elsewhere. To train the SVM, we used

the libsvm toolkit [17].

As input to the SVM, we used a feature obtained from

DNNs. We put a bottleneck layer in the last hidden layer of

the DNN. This layer has discriminative information that allows

to distinguish between spoofed and normal speech. As the DNN

were trained with the training spoofs the method was not totally

spoof-independent but we wanted to compare both methods on

the evaluation data.

We trained one SVM for each type of feature and the out-

puts were fused again by logistic regression. This was our con-

trastive 1 system. The fusion of the four systems, DNN and

SVM with both features, was our contrastive 2 system.

4. Experiments

4.1. ASV spoofing challenge

The ASV spoofing challenge provides a standard corpora and

evaluation metric to compare different spoofing detection ap-

proaches [7]. This challenge tries to stimulate the develop-

ment of generalized countermeasures able to detect unobserved

spoofing attacks. The challenge is based on a database con-

taining genuine and spoofed speech. The spoofed speech is

obtained from the original data by applying several voice con-

version (VC) and speech synthesis (SS) methods as described

in [6]. These spoofing techniques are:

• S1: Frame selection based VC [18].

• S2: VC based on modifying the C1 of the MFCC.

• S3: SS using the hidden Markov model toolkit (HTS),

adapting models to the target speaker with 20 utter-

ances [19].

• S4: S3 adapting with 40 utterances.

• S5: VC with Festvox1.

• S6: VC using joint density GMM and maximum likeli-

hood parameter generation [20].

• S7: Similar to S6 but using line spectrum pair (SLP) in-

stead of MFCC.

• S8: Tensor based VC [21].

• S9: VC using kernel partial least square (KPLS) to im-

plement a non-linear transformation [22].

• S10: SS with MaryTTS2 training models with 40 utter-

ances per target speaker.

1http://www.festvox.org
2http://mary.dfki.de



Table 1: EER(%) for different systems and attack types in development set. The term LF stands for linear filtered and BN Layer

indicates the hidden layer where we computed the bottleneck features.

System All attacks S1 S2 S3-4 S5

GMM LFCC+∆+∆∆ 2.852 0.258 8.307 0.066 1.966

GMM MFCC+∆+∆∆ 7.539 1.001 19.65 0.057 6.564

GMM LF RPS+DCT+∆+∆∆ 0.042 0.039 0.029 0.014 0.105

DNN LF Spectrum 0.039 0.000 0.035 0.062 0.015

DNN LF RPS 0.161 0.128 0.177 0.047 0.279

Fusion DNN (Spectrum+RPS) (primary) 0.000 0.000 0.000 0.000 0.000

SVM LF Spectrum BN Layer 2 1.817 0.706 3.194 1.084 0.834

SVM LF Spectrum BN Layer 3 0.227 0.024 0.449 0.000 0.030

SVM LF RPS BN Layer 2 3.625 2.744 2.942 0.393 6.702

SVM LF RPS BN Layer 3 1.349 1.077 1.226 0.084 2.232

Fusion SVM (Spectrum+RPS) (contrastive1) 0.019 0.000 0.067 0.000 0.000

Fusion (DNN+SVM)×(Spectrum+RPS) (contrastive2) 0.002 0.000 0.007 0.000 0.000

Fusion DNN Spectrum + GMM RPS 0.002 0.009 0.000 0.000 0.000

Fusion DNN (Spectrum+RPS) + GMM RPS 0.003 0.009 0.000 0.000 0.001

All methods, except S4 and S10, were trained with 20 utter-

ances of the target speaker.

The challenge database was split into three parts: train-

ing, development and evaluation. The training set is intended

to train spoofing and genuine speech models (3750 genuine,

12625 spoofed). The development set is used to tune hyper-

parameters and train fusion of classifiers (3497 genuine, 49875

spoofed). Finally, spoofing detection performance is measured

on the evaluation set (9404 genuine, 184000 spoofed). Spoofing

methods S1 to S5 appear in the three parts and are denoted as

known attacks. Meanwhile, S6-S10 only appear in the evalua-

tion part and are denoted as unknown attacks. The fact of adding

unknown attacks to the evaluation set encourages participants to

develop spoofing independent countermeasures.

Spoofing detection systems must provide a score for each

trial, where higher scores indicate high probability of genuine

trial while low scores indicate a spoofed trial. Then, perfor-

mance is measured in terms of spoofing detection equal error

rate.

4.2. Results

4.2.1. Development

Table 1 shows EER on the development data for different spoof-

ing detection systems. We present results for each type of at-

tack. We fused S3 and S4, given that both synthesize the speech

with the same algorithm. We can see very low error rates in the

table. First of all, we want to point out that, in cases like this, we

must take into account the significance of the results. According

to the “rule of 30” [23], to be 90% confident that the true error

rate is ±30% of the measured error rate there must be at least

30 errors. By applying this rule to the full development dataset,

we obtain that a system needs to reduce EER by around 0.06%

absolute to be significantly better than another. That also means

that we cannot measure EER under 0.06% with confidence. If

we consider each attack individually the minimum EER raises

to 0.22%. Most of our systems have EER under this threshold

so, to be able to continue improving performance, we should

increase the number of trials.

The first block of the table shows results with our base-

line classifier, the GMM. The terms LF and MF indicate that

the features are linear or Mel filtered. The linear filter bank

clearly outperformed the Mel filter bank in this task. We ob-

served the same trend for RPS and for DNN classifiers. Never-

theless, RPS features yielded EER almost 20 times better than

LFCC. The second block presents results with the DNN clas-

sifier. The DNN on the log-linear-filtered spectrum improved

the GMM with LFCC by 99%. It also improved the GMM with

RPS but not significantly. The EER for RPS with DNN was

4 times higher than for RPS with GMM. However, it seems to

include information complementary to the Spectrum so the fu-

sion of both DNNs achieved EER=0%–this was our primary

system. The third block displays results with bottleneck fea-

tures on one-class SVM classifiers. The term BN Layer N in

the table indicates that we computed the bottleneck features in

a DNN with N hidden layers. The BN features were computed

in the last hidden layer. We tried several sizes for the BN layer

obtaining the best results for a dimension of 10. Using 3 hidden

layers was significantly better than using 2 layers. Increasing

the number of layers even more did not help. The results of

the individual SVM were significantly worse than the results

with DNN. However, the fusion of the SVM of Spectrum and

RPS–BN 3 hidden layers–, achieved very good performance,

not significantly worse than the fusion of DNNs–This was our

contrastive 1. In the fourth block, we show some fusions. The

fusion of DNN and SVM with both features was our contrastive

2 system. All the fusions attained competitive results with no

significant differences.

We wanted to obtain an estimation of how our DNN system

would perform on unknown attacks. For that, we experimented

training the DNN on only one attack type and evaluating on the

others. Table 2 shows the results of this experiment, which we

called leave-three-out training. The EER degraded significantly

with regard to training with all the spoofs. Attacks S1 and S2

are the most similar, training on S1 produced low EER on S2

and vice versa. On the other hand, S3 and S4 are very different

from the others. EER on S3-4 was high when training on the

other attacks, and reciprocally, training on S3-4 produced high

errors on S1, S2 and S5. The system trained on S5 is the one that

generalized the best. For RPS features, training on S5 produced

good EER on S1 and S2. However, this was not reciprocal,

training on S1 or S2 produced very high error rates on S5. We



Table 2: EER(%) for DNN systems trained with leave-three-

out.

System All attacks S1 S2 S3-4 S5

LF Spectrum

Train S1 14.9 0.00 0.60 23.9 4.01

Train S2 8.22 0.34 0.30 13.1 1.73

Train S3-4 28.5 49.6 25.3 0.12 28.2

Train S5 4.81 3.90 2.46 7.25 0.10

LF RPS

Train S1 7.36 1.64 2.71 5.21 15.7

Train S2 5.05 0.61 0.73 6.40 7.69

Train S3-4 7.94 6.16 5.83 0.04 20.6

Train S5 3.83 1.10 1.07 5.67 2.31

also experimented training the DNN with all the spoofs but one

(leave-one-out) observing similar patterns. To obtain EER<1%

we needed to train with at least three attacks, including S3-4.

4.2.2. Evaluation

Table 3 shows our results on the evaluation data. These error

rates were provided by the challenge organizers. For reference,

the last line shows the result of the best overall system of the

challenge. After the evaluation, the organizers allowed to sub-

mit additional systems for post-evaluation analysis. Again, we

must take into consideration the significance of the results. For

all the trials, 30 errors correspond to an error rate of 0.015%;

and for known or unknown attacks to 0.03%.

For known attacks, our best system was the fusion of DNN

and SVM with both features (contrastive 2). The rest of fu-

sions were also competitive, not significantly worse than our

best. Also the GMM with RPS features performed very well.

The fusions of systems with spectral and RPS features signif-

icantly improved the results of the individual systems. With

regard to unknown attacks, the best system was the GMM with

LFCC, which was the worst for known attacks. We also note

that spectral features performed better than RPS on unknown

attacks. The SVM systems performed worst than the DNN in

both types of attacks. The fact that the SVM was trained only

on genuine speech did not help to generalize better. When aver-

aging all the attacks the best overall system was our primary.

The organizers also provided EER per attack type for the

three systems submitted to the evaluation. Table 4 shows the

results, the last line shows the best competing system for ref-

erence. For individual spoofs, the error rate corresponding to

Table 3: EER(%) for different systems in the evaluation set set.

System Known Unknown All attacks

GMM LFCC+∆+∆∆ 1.843 7.58 4.27

GMM LF RPS+DCT+∆+∆∆ 0.024 9.30 4.66

DNN LF Spectrum 0.050 8.70 4.38

DNN LF RPS 0.098 9.48 4.79

Fusion DNN (Spectrum+RPS) (primary) 0.025 8.17 4.10

SVM LF Spectrum 0.129 9.58 4.85

SVM LF RPS 0.559 11.67 6.11

Fusion SVM (Spectrum+RPS) (contrastive1) 0.028 9.36 4.69

Fus. (DNN+SVM)×(Spectrum+RPS) (contrastive2) 0.013 8.93 4.47

Fus. DNN Spectrum + GMM RPS 0.014 8.64 4.33

Fus. DNN (Spectrum+RPS) + GMM RPS 0.020 8.52 4.27

Best overall system 0.408 2.01 1.21

Table 4: EER(%) for each attack type in the evaluation set.

Known attacks: S1 S2 S3 S4 S5

Primary 0.021 0.031 0.021 0.023 0.031

Contrastive1 0.029 0.084 0.000 0.000 0.029

Contrastive2 0.020 0.024 0.000 0.000 0.021

Best overall system 0.101 0.862 0.000 0.000 1.075

Unknown attacks: S6 S7 S8 S9 S10

Primary 0.038 0.032 0.041 0.021 40.708

Contrastive 1 0.103 0.140 0.4489 0.027 46.095

Contrastive 2 0.049 0.052 0.1488 0.020 44.372

Best overall system 0.846 0.241 0.141 0.346 8.490

30 errors is 0.108%. Our primary is under this error rate for

all the attacks but S10. Our systems were significantly better

than the best system of the challenge in 6 out of 10 attacks

(S1,S2,S5,S6,S7,S9). However, the best system was around

5 times better than ours on S10. That made its average EER

lower than all the rest. Our systems did not generalize well for

S10. MaryTTS uses MBROLA3 to generate the speech wave-

form while the rest of spoofs used the STRAIGHT [24] or the

MLSA [25] vocoders. This fact seems to indicate that our coun-

termeasures are vocoder dependent.

5. Conclusions

This paper presents our submission to the automatic speaker

verification spoofing challenge (ASVspoof 2015). We proposed

systems based on magnitude Spectrum and relative phase shift

(RPS) features and two DNN based classifiers. The first classi-

fier used the DNN posterior probability for genuine speech as fi-

nal output. In the second one, we extracted a bottleneck feature

from a DNN and fed a one-class SVM with it. The one-class

SVM modeled the distribution of genuine speech. We thought

that the SVM might work better than the DNN on unknown

attacks, given that it was trained only on non-spoof trials. How-

ever in the evaluation, the DNN performed better. The fact that

the bottleneck DNN was trained only known spoofs limited the

generalization capability of the SVM.

In the case of spectral features, DNN improved significantly

with respect to the GMM baseline. This is interesting for cer-

tain applications. For example, mobile telephony vocoders do

not take into account the phase, so we could not use a system

based on it. The fusion of systems based on spectrum and RPS

significantly improved the results with respect to the individ-

ual systems. Looking at our results for each type of attack,

our primary have EER< 0.1%–which is the minimum EER

that we can measure significantly for a dataset of this size–,

for 9 out of 10 attacks. Our system failed on only one spoof

with EER=40%. Most of the systems submitted to the evalua-

tion also failed on this attack. This last attack used a different

method to generate the speech signal, which indicates that our

methods are vocoder dependent and that there is still work to do

to create a countermeasure robust to all kind of attacks.

3http://tcts.fpms.ac.be/synthesis/mbrola.html
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